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Summary: 

Background: The digital cadastre is one of the most fundamental spatial layers that are used by 

various organisations, however, the geo-positional accuracy of the digital cadastre is variable 

which causes numerous problems. The traditional costs of upgrading the spatial accuracy is 

very time-consuming and costly. This project explores the feasibility of semi-automatic or 

automatic feature extraction of fence-lines using Lidar and Imagery as well as evaluate the 

feasibility of using these fence-lines for upgrading the digital cadastre and the accuracies 

obtained. 

 

Objectives: The objectives of this project is to evaluate the suitability of imagery and Lidar for 

upgrading the spatial accuracy of digital cadastre; assess the accuracy achievable through these 

methods; develop (semi-) automatic feature extraction methodologies and assess applicability 

for operational implementation; and provide recommendations on application of imagery and 

Lidar for the upgrade of the digital cadastre. 

 

Data: As the developed methodology was expected to operate on both urban and rural areas, 

Lidar data (2ppsm) and Imagery (10cm GSD) was available for a rural area near Toowoomba 

and for a semi-urban area at Morayfield both in Queensland. The data for Morayfield was 

captured over two different times and had different combined point density (24 ppsm and 64 

ppsm), while the ground sampling distance for the imagery were 10cm and 6 cm respectively. 

The Morayfield Lidar data was verified using differential GPS field survey which demonstrated 

that the RMS error for vertical accuracy of the Lidar data ranged between 3mm to 3cm. The 

GPS field survey coordinates was further used for image rectification. Digital cadastral data was 

available for both the areas. Further Lidar, imagery and cadastral data was made available for 

Adelaide, South Australia for testing of the algorithm in an urban area with different fence-line 

characteristics. 
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Methodology: A multi-pronged approach in feature extraction was used to evaluate the 

suitability of imagery and Lidar for extracting linear features (fence-lines) with a view to 

upgrading the spatial accuracy of digital cadastre. A critical part of the development effort was 

to ensure that the method was suitable to cater to a variety of data sources under wide ranging 

environment for the capture and availability of data sources. It was also considered critical for 

development of a GUI with a user-friendly framework for quality assessment and refinements 

of the result. The method was designed to automate a majority of the steps in the selected 

workflows. After initial exploration of multiple feature extraction methods, it was identified 

that Lidar based methods (under sparse, medium and high-density point cloud collection 

conditions) provided more robust feature extraction results using automated methods and thus 

remained the core focus for the remainder of the project work. To cater for areas which lacked 

Lidar point clouds or benefited from existing imagery, additional Image-based feature 

extraction methods were developed to complement the Lidar-based fence-line extraction 

methods. The project methodology was thus designed to account for use of Lidar point clouds 

collected at various point densities and aerial photos at multiple resolutions. Design of the 

methodology also catered for semi-urban and rural areas that accounted for physical 

differences in actual fence features. Finally, a GUI was developed with consideration given to 

the provision of a software that was robust and easy to use either on an ENVI/IDL or an open 

source environment.  

 

Results: The developed workflow has shown promising results, with extraction accuracy that 

should allow for an accurate adjustment of the existing cadastre. Fence-lines extracted from 

Lidar have a combined horizontal accuracy of 0.282m while fence-lines extracted from imagery 

have a combined horizontal accuracy of 0.258m. Although the accuracy of image-based feature 

extraction appears to be better, the number of fence-line segments extracted from Lidar is 

significantly higher in number. 
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Conclusion: This aim of the project was to explore the feasibility of using Lidar point cloud and 

imagery data for feature extraction leading to improvement of existing cadastral survey using 

fence-lines. This goal was achieved by thorough testing and development of a workflow for 

semi-automated extraction of fence-line boundaries from airborne laser scanning and imagery 

data. To ensure that the developed workflow could be implemented over rural and urban 

areas, the study areas were chosen with such characteristics and with varying data density to 

simulate real conditions. Thus, it can be concluded that Lidar based fence-line extraction can be 

used, and where necessary augmented by image-based extraction using the methods and 

workflows developed during this project and cadastral boundaries block adjusted with a very 

high degree of confidence. 
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1 Introduction 

The Digital Cadastral Database (DCDB) is the spatial representation of current land parcels in a 

jurisdiction. It usually includes a legal Lot on Plan description and relevant attributes and a 

graphical representation of the parcels. The DCDB provides the map base for systems dealing 

with land related information. 

The DCDB in Queensland was created by digitising existing cadastral maps at a variety of scales 

and accuracies. A positional accuracy value has been allocated to all parcels in the DCDB. The 

value reflects the maximum error status of the parcel and has been derived from the capture 

process or assigned as the spatial accuracy of the DCDB has been upgraded. The maximum 

error in the DCDB is currently +/- 63m. The maximum error status is based on an assumed 

plotting accuracy for the source mapping.  

Stakeholders rely on the graphical representation of the parcels to be spatially accurate. Since 

the initial capture of the DCDB from paper based maps, data users are now utilising the data in 

ways that requires a higher spatial accuracy than was achieved in the initial capture. The 

difference in the position of the DCDB is visible to users when overlaid over aerial and satellite 

imagery. Councils, utilities and other agencies involved in asset management now have highly 

spatially accurate data of their assets which they attempt to link to the DCDB. 

This project explores the extent to which Lidar data, in cases complemented by high-resolution 

aerial imagery can be used to upgrade the spatial accuracy of the digital cadastre. Automated 

and semi-automated feature extraction are employed to detect, extract and validate the 

location of natural and man-made features which may indicate the location of property 

boundaries, and these are correlated with existing digital cadastral data in order to identify and 

rectify geo-positional biases within the existing digital representation of the cadastre. 

The primary focus of the project is upon enhancement of the absolute accuracy of the cadastral 

database rather than upon its relative accuracy, though overall spatial accuracy upgrading in 

non-urban areas are also addressed. The project centres upon two main research components. 
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The first involves the selection and evaluation of candidate 2D and 3D feature extraction tools. 

The second comprises a pilot study, largely empirical in nature, which involves the 

determination of geo-positional biases between the digital cadastre and land parcel boundary 

segments extracted via the feature extraction approach.  

The project culminates in this report that not only presents the results of the pilot study and 

assesses the relative value of various data sources and feature extraction methodologies, but 

also identifies operational opportunities and limitations. 

1.1 Problem Statement 

The digital cadastre is one of the most fundamental and important spatial layers maintained by 

land agencies across Australia and NZ. It is used by a multƛǘǳŘŜ ƻŦ άŘƻǿƴǎǘǊŜŀƳέ ƻǊƎŀƴƛǎŀǘƛƻƴǎ 

in a diverse range of applications and provides the frame of reference for a number of other 

spatial layers.  

Notwithstanding its critical role, the digital cadastre is, in many ways, not fit-for-purpose on 

account of its variable spatial accuracy (Appendix 10.1). The time and cost of upgrading the 

accuracy of the digital cadastre by field survey procedures is beyond what the relevant agencies 

can realistically afford. An alternative methodology is required that brings substantial cost and 

productivity gains, while delivering a worthwhile improvement in spatial accuracy, especially 

absolute geo-positional accuracy.  

Without exception, efficiency and productivity gains come at a cost. In the case of upgrading 

the digital cadastre using remote sensing data, there is the potential in certain situations of a 

managed accuracy cost being incurred. The question then is: will this alternative remote 

sensing approach deliver sufficient accuracy at a reasonable cost and in a reasonable 

timeframe? This is the question to be answered by this project.  

The research project will in particular, investigate the use of various remotely sensed data, 

namely imagery and Lidar, and evaluate their suitability in the context of upgrading the spatial 

accuracy of the cadastre.  
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The intent is to not only provide an empirical assessment of the alternative technology options, 

but to make recommendations on how and under what conditions, the findings of the project 

might be applied in an operational setting by DNRME and, potentially, by other land agencies 

across Australia and NZ. 

1.2 Project Aim 

The aim of this project is to evaluate the feasibility of utilising Lidar and Imagery to extract 

fence-lines for geo-positional upgrade of digital cadastre and evaluate the accuracies obtained. 

1.3 Project Objectives 

1. To develop upgrading methodologies for cadastral data based on automated feature 

extraction and to assess their applicability and potential for operational implementation 

by partner land agencies; 

2. To evaluate the contribution of remotely sensed data sources (e.g. airborne and satellite 

imagery, and Lidar) to upgrading the spatial accuracy of the digital cadastre; 

3. To identify, through experimental testing, the accuracy achievable from those data 

sources individually and in combination; 

4. To deliver recommendations on how and under what conditions remote sensing data 

might be employed for cadastral upgrade purposes. 

1.4 Research Questions 

The following research questions are formulated which will assist to achieve the aim and 

objectives of this project: 

1. Is it possible to detect and extract, both manually and automatically, geo-positional data 

using either Lidar data or Ortho-imagery complemented by Lidar data, to accuracy levels 

corresponding to those specified for digital cadastral data? 
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2. What spatial resolutions and metric quality of input data are required to meet cadastral 

accuracy requirements; i.e. what density of Lidar data and what sources and scales of 

imagery (airborne and satellite) are appropriate to support boundary feature extraction 

for cadastral upgrade? 

3. What developments in, and implementations of 2D and 3D automated feature 

extraction are necessary to support semi- and fully-automatic workflows and data 

processing pipelines for the process of upgrading the digital cadastre from imagery? 

4. Can the georeferencing of feature data extracted via the developed methodology be 

employed to effect an upgrading of the current cadastre to the required accuracy, 

primarily the absolute geo-positioning accuracy of the digital cadastre? 

5. Does the proposed scenario for upgrading the accuracy of the digital cadastre via 

imagery and Lidar data have potential in the future for operational implementation by 

the relevant custodians of the cadastre? 

1.5 Project Significance 

The output of the project includes procedures and associated processing workflows, graphical 

user interface and related source codes and computational tools for Lidar and integrated 

image-based extraction of fence-lines for upgrading the cadastre. 

It provides a new and more efficient means to maintain geo-positional accuracy of the digital 

cadastre and is expected to automate aspects of the upgrade process which would otherwise 

be an expensive and relatively slow manual process.  

There is potential for significant scientific or technical impact through process automation and a 

new approach to cadastral data acquisition and upgrading as well as the exploration of new 

methods to extract features that are extremely narrow and have associated elevation ranges. 

The target of this project is land agencies who are custodians of the cadastre. The processes 

developed in this research provide an alternative approach to the current, labour-intensive and 

expensive land survey or image based technique for cadastral upgrading. 
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1.6 Benefits of a Successful Outcome 

The project demonstrates the benefits of CRCSI R&D expertise in the enhancement/upgrading 

of both the accuracy and operational work processes related to an important spatial data set, 

namely the cadastre.  

The success of this project demonstrates the capability of the CRCSI and partner agencies to 

work together in the conduct and management of applied research that aims to enhance the 

business capabilities and products of Government sector participants. 

1.7 Project Deliverables 

The preparation of a report that not only presents the results of the pilot study and assesses 

the relative value of various data sources and automated feature extraction/upgrading 

methodologies, but also identifies operational opportunities and limitations, and draws 

conclusions regarding the prospects for adoption of the developed methodology by the partner 

agencies. Software tools, algorithms, workflow documentation, etc. are also made available to 

partners for either adoption or further development. 

1.8 Project Risks 

The accuracy of image-based cadastral data collection falls short of requirements: To mitigate 

that it is necessary to ensure comprehensive initial analysis of data sources & take account of 

differing requirements between urban and non-urban cadastres. 

Development of automated process, while demonstrating concept feasibility, may fall short of 

operational requirements & thus not be implemented by DNRME or other land agencies: To 

mitigate that it suggested to ensure both developed manual and semi-automated workflows 

offer practical alternatives in such circumstances. 

 

 

 



6 

 

2 Review of Previous Work 

This section reviews some of the previous work done in Image processing and Lidar processing 

relevant to this project which is feature extraction for linear features that would assist in the 

extraction of fence-lines for cadastral data geo-positional upgrade. 

This section explores some of the work done in image processing first, followed by Lidar 

processing work, which then leads to a combined Lidar and Imagery processing field of 

research. 

2.1 Image Processing 

There has been a relatively large body of work for detection of linear/rectilinear features from 

LIDAR Point cloud and Imagery with varying level of success in feature extraction. While some 

of these extraction methods may be applied to update the cadastre, no literature were found in 

the scope of the search for this project discussing the extraction of fence-lines for updating the 

cadastre. 

The focus of this review is therefore to explore the availability of methods and techniques that 

are used for generalized detection of linear features that could then be extrapolated to 

detection of features like fences. The literature discuss feature extraction methods using mainly 

two data sets, namely Imagery and Lidar point cloud.  The third approach or method is fusing 

the information derived from Imagery and LIDAR as a combined method.  

Image based methods can broadly described as edge detection methods using one or the other 

type of edge detectors. One of the most popular method for Image based detector is Canny 

Edge detector (Canny 1986; Ding and Goshtasby 2001; Green 2002; Juneja and Sandhu 2009; 

Biswas and Sil 2012; Shrivakshan and Chandrasekar 2012). 
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The edge detectors of images usually are of the following type: 

Gradient edge detectors - detects the edges by looking for the maximum and minimum in the 

first derivative of the image (Shrivakshan and Chandrasekar 2012); uses first directional 

derivative operation and includes algorithms such as Sobel operator (Sharifi et al. 2002); 

Laplacian - The Laplacian (Mexican Hat operator) method searches for the zero crossings in the 

second derivative of the image to find edges; (Shrivakshan and Chandrasekar 2012); 

Zero Crossing ς uses second derivative and includes Laplacian operator and second directional 

derivative; (Sharifi et al. 2002); 

Laplacian of Gaussian ς developed by (Marr and Hildreth 1980) as a combination of Gaussian 

filtering with the Laplacian; 

Gaussian edge detectors ς symmetric along the edge and reduces the noise by smoothing the 

image; includes Canny edge detector; 

Coloured edge detectors ς divided into three categories of output; Fusion methods, Multi-

dimensional gradient methods and Vector methods. 

Linear Methods - Also known as linear method, it involves discrete approximation of the first 

order derivative in a given direction, Pratt (0o, 45o, 90o, 135o); Prewitt (compass direction), 

!ǊƎȅƭŜΩǎ ƻǇŜǊŀǘƻǊ όŎƻƳōƛƴŀǘƛƻƴ ǿƛǘƘ DŀǳǎǎƛŀƴύΤ aŀŎƭŜƻŘΩǎ ƻǇŜǊŀǘƻǊ όŎƻƳōƛƴŀǘƛƻƴ ǿƛǘƘ 

Gaussian) (Peli and Malah 1982); 

Non-Linear Methods ς 2 x 2 or 3 x 3 window, gradient which is defined as the maximum over 

n of the magnitude of the partial derivative in direction n. Roberts: max{|f(i, j) ς f(i + 1, j +1)|, 

|f(i, j + 1) ς f(i + 1, j)|; Sobel: (3 x 3 window); Prewitt: (same operator as Sobel, different 

scaling); Kirsch; and Robinson: (3-level and 5-level, template matching using a set of masks to 

determine the existence of an edge and direction); Abdou (extended the masks to larger 

window sizes 5 x 5, 7 x 7, 9 x 9); Wallis (Laplacian on the logarithm of the intensity); Smith and 

Davis (two operators for binary and grey level images that measure the ratio between the 

balance of a bi-modal distribution and a measure of disorder); Hale (implement a two-

dimensional operator by rotating a one-dimensional operator); Rosenfield (computing 
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differences between averages of non-overlapping neighbourhoods that meet at the same 

point); (Peli and Malah 1982) 

Best Fit Method ς ōŜǎǘ Ŧƛǘ ƻŦ ŀ ŦǳƴŎǘƛƻƴ ǘƻ ŀ ƎƛǾŜƴ ƛƳŀƎŜΣ IǳŜŎƪŜƭΩǎ ƳŜǘƘƻŘ όŎƻƳǇǳǘŜŘ 

parameters based on orthogonal functions from comparison of circle and ideal 2D edge); Abdou 

(optimal edge fitting based on discrete image model); Modestino and Fries (determine filter 

operation such that its operation on a noisy image is the best approximation to the operation of 

Laplacian on the ideal image); (Peli and Malah 1982). 

Several authors have developed performance evaluation criteria for edge detectors: 

Precision, Resolution and Accuracy (Sharifi et al. 2002); Signal to Noise Ratio (SNR) and Average 

Risk defined as the ratio of the number of detected edge points which do not coincide with the 

ideal edge, to the number of detected edge points which coincide with the ideal edge (Peli and 

Malah 1982); Error rate, Localisation and Response  by Canny; Distribution of the detected true 

edge points, developed by Fram and Deutsch as well as Maximum likelihood estimate of the 

ratio of the total number of true edge points to the total number of detected edge points; 

Weighted and normalised deviation of the real edge from the ideal edge line, developed by 

Pratt;  

Further quantitative performance evaluation criteria were: Percentage of edge points detected 

on the ideal (desired) edge; Number of detected edge points which do not coincide with the 

ideal edge (normalised by the number of points on the edge); Mean width of a detected edge, 

defined as the ratio of the total number of detected edge points to the number of ideal edge 

points; Weighted and normalised deviation of an actual edge point from the ideal edge as 

defined by Pratt; Average squared deviation of a detected edge point from the ideal edge; and 

Mean absolute value of deviation (Peli and Malah 1982). 

Additionally, qualitative edge detection performance criteria were: Type of contour (perfect 

edge, broken edge, perfect but broken at critical points such as corner of square); Single or 

double edge (a single or two separate edges); and Distortion (shift of the edge) (Peli and Malah 

1982). 



9 

 

Edge detectors are expected to have the following properties (Ziou and Tabbone 1998): 

Detect properties of image such as discontinuities in the photometrical, geometrical and 

physical characteristics. Variations in the grey level of the image include discontinuities (step 

edges), local extrema (line edges) and edge meets (junctions). Physical edges correspond to 

variations in reflectance, illumination, orientation, and depth of surfaces and is proportional to 

scene radiance which is represented in the images by the change in intensity function.  

Smoothing of Image ς positive effect ς reduce noise, ensure robust edge detection; negative 

effect ς information loss; 

Image Differentiation ς is the computation of the necessary derivatives to localise the edges 

(localise variations of the image grey level and to identify the physical phenomena that 

produced them). The differentiation operator is characterised by it order, its invariance to 

rotation and its linearity; 

Edge Labelling ς localising edges and increasing signal-to-noise ratio by suppressing false edges 

and involves finding the local maxima along the gradient vector; 

Multi-detector and Multi-scale approaches ς common convolution operators are of the form 

(fs*I)(x,y) where I is the image, fs is the filter and s the scale; multiple edge detectors and scales 

are necessary for multiple images. 
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2.2 Lidar Processing 

Data processing can be automatic or semi-automatic and can include multiple operations such 

as filtering, modelling of systematic errors, feature detection and line thinning (Sithole and 

Vosselman 2003b). 

Most of the Lidar filtering methods facilitate the extraction of features of interest by filtering 

the element that would potentially confuse an accurate extraction process by modelling an 

accurate bare earth surface that becomes the backbone of downstream processes. These 

methods include filters such as: 

Iterative linear least squares interpolation ς which removes a low-degree polynomial trend 

surface from the original elevation data to produce a set of reduced elevation values. Here,  

firstly a rough approximation of the terrain surface is created, then sign of the residual checked 

which says negative values are terrain and the process is iterated (Liu 2008). 

Comparative local curvature filter ς used to filter tree points by comparing local curvatures of 

point measurements which was developed by (Haugerud and Harding 2001) and analysed in 

(Zhang et al. 2003) 

Adaptive TIN model ς used to find ground points in urban areas. Firstly, seed ground points 

within a user-defined grid of a size greater than the largest non-ground features are selected to 

compose an initial ground dataset. Then, one point above each TIN facet is added to the ground 

dataset every iteration if its parameters are below threshold values. The iteration continues 

until no points can be added to the ground dataset. However, the problem with the adaptive 

TIN method is that different thresholds have to be given for various land cover types. This 

method was proposed by Axelsson  and analysed by (Zhang et al. 2003). 

Slope based filter ς identifies ground data by comparing slopes between a LIDAR point and its 

neighbours. A point is classified as a ground measurement if the maximum value of slopes 

between this point and any other point within a given circle is less than a predefined threshold. 

The lower the threshold slope, the more objects will be removed. The threshold slope for a 

certain area is either constant or a function of distance. A reasonable threshold slope can be 



11 

 

obtained by using prior knowledge about terrain in the study area. This method works well in 

flat urban areas, but has errors when applied to vegetated or variable slope areas.  It assumes 

that the gradient of the natural slope of the terrain is distinctly different from non-terrain 

objects. This method was proposed by Vosselman and analysed by (Zhang et al. 2003);  

ὈὉὓ ὴᶰὃ  ᶅ ὴᶰὃḊ Ὤ  Ὤ   ЎὬ  Ὠ ὴȟὴ    (Vosselman 2000) 

(Vosselman 2000) proposed three ways to derive filter kernels based on knowledge about the 

height differences in the terrain (filters 2 and 3 make use of training data set): 

1. Synthetic Function ς based on terrain shape and precision of height measurements: 

ЎὬ  Ὠ πȢσὨ ρȢφυЍς„ 

Where 0.3 is for 30% terrain slope (different for different slope), and the second term is to 

allow that 5% of the terrain points with a standard deviation „ may be rejected 

2. Preserving important terrain features ς derive the terrain shape characteristics from a 

training sample consisting only of ground points such that the points in this area can be used to 

empirically derive the maximum height differences as a function of the distance between two 

points ς this filter assists to maintain important terrain features but may also accept points that 

are non-ground: 

 

3. Minimising classification errors ς minimising errors by omission or commission for ground 

points. If the height of a ground point at a given distance is known, determine height 

differences between other points using probabilities derived from frequency counts of height 

differences between point pairs in a training data set of ground points, and between point pairs 

from the training set of ground points and other point from the set of unfiltered data. These 

values of height differences can be taken as the maximum height differences that are allowed 

in the filtered data in order to minimise the number of classification errors: 
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Mathematical morphological filter are a type of slope based filter mainly used for bare-earth 

extraction. Lidar images are converted to regular, greyscale, grid image in terms of elevation, 

while shapes of elevated buildings, cars etc. can be identified by change in grey tone, and 

algebraic set operations are performed to identify objects (Zhang et al. 2003). The main 

objective is to classify Lidar data into two classes, namely ground and non-ground points 

(Vosselman 2000; Aktaruzzaman and Schmitt 2010). Ground data is used for DTM generation 

while non-ground data is used for object detection and subsequent classification. Other results 

by various authors are as follows:  large height difference is unlikely to be caused by steep slope 

in terrain (Vosselman 2000; Baligh et al. 2008); process of finding local minima and identifying 

terrain points from coarse to finer grid (Hu, Y. 2003); establishing the topological and geometric 

relations between bare-earth and surface objects, identifying surfaces whose perimeter is 

raised above the neighbourhood (Sithole and Vosselman 2003a). 

Spectral Information Integration: Mapping spectral value from image pixel to Lidar point data 

mostly used for misclassified points between buildings and trees.  

Calculate colour index:  CI = green /  (red+green+blue)  

where the index classified values are as: buildings < 0.35 < trees. (Aktaruzzaman and 

Schmitt 2010) 

 

A brief look at the literature was also made with a view to identify error in LIDAR data and its 

classification and for methods used to detect these errors: Commission error which results in 

classification of non-ground points as ground measurements (Vosselman 2000; Zhang et al. 

2003); Omission error ς removes ground points mistakenly (Zhang et al. 2003); and Systematic 

error which is visible when there are differences in height when combining data from adjacent 
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strips (Vosselman 2000) and can be eliminated by modelling the errors and performing a strip 

adjustment. 

Methods of error detection include Wavelet De-Noising to assist in evaluating the response of 

filters (Baligh et al. 2008); Ground truth; Derived filter functions to check against other filter 

results (Vosselman 2000); and Manual comparison to evaluate filter performance against that 

performed with manual filtering  (Sithole and Vosselman 2003b). 

In a report submitted to ISPRS, (Sithole and Vosselman 2003b) make a comparative assessment 

of different filters. A comparison of open-source Lidar filtering algorithms in a forest 

environment is made by (Montealegre et al. 2015). An extensive review of filtering methods 

and algorithms and overview of LIDAR point cloud processing software is abundant in literature: 

(Tao and Hu 2001; Zhang and Whitman 2005; Fernandez et al. 2007; Baligh et al. 2008; Meng, 

Currit, and Zhao 2010). 

Issues with computational efficiency are documented by (Sithole and Vosselman 2003a); a brief 

study on the Lidar data capture accuracy is discussed by (Montealegre et al. 2015) who 

generally stipulates this to be  0.15m in vertical and 1m horizontal. 

New filters and algorithms for classification have been developed by several authors. Table 2-1 

shows a list of methods and the authors who developed them that were researched for this 

project. 

Table 2-1: New Filters or algorithms developed in these papers 

Developed by Method 

(Zhang et al. 2003) Progressive morphological filter for removing non-ground 

measurements from airborne LIDAR data 

(Brunn and Weidner 1998) Hierarchical Bayesian nets for building extraction using dense DSM 

(Charaniya et al. 2004) Supervised parametric classification of ALS 

(Chen, C. et al. 2017) Fast and robust interpolation filter for ALS point clouds 
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(Chen, Q. et al. 2007) Filtering ALS data with morphological methods 

(Silván-Cardenás and Wang 

2006) 

Multi-resolution approach for filtering Lidar altimetry data 

(Vosselman 2000) Slope based filtering of laser altimetry data 

(Wang, O. et al. 2006) Bayesian approach to building footprint extraction from ALS 

(Aktaruzzaman and Schmitt 

2010) 

Automatic object detection to support urban flooding simulation 

(Elmqvist et al. 2001), 

(Elmqvist 2002) 

Active contours ς applied to Lidar data the active shape model 

behaves like a membrane floating from underneath the data points 

(Sohn, G and Dowman 2002) Regularisation method ς TIN progressively densified and points on TIN 

are bare-earth while the rest are objects 

(Roggero 2001) Modified slope based filter ς variant of the morphological filter 

developed by Vosselman 

(Brovelli et al. 2002) Spline interpolation ς made of five steps, Pre-processing; Edge 

detection; Region growing; Correction; and DTM computation 

(Wack and Wimmer 2002) Hierarchical modified block minimum ς algorithm where DEMs of 

progressively lower resolutions are created 

(Axelsson 1999, 2000) Progressive TIN densification ς a sparse to dense TIN is derived from 

Lidar points based on threshold values 

(Sithole and Vosselman 2001) Modified slope based filter ς variant of morphological filter developed 

by Vosselman, works by pushing up vertically a structuring element (in 

the shape of an inverted bowl) from underneath a point cloud 

(Pfeifer et al. 1999; Pfeifer et 

al. 2001), (Kraus and Pfeifer 

1998, 2001), (Briese and 

Pfeifer 2001) 

Hierarchical robust interpolation - a rough approximation of the 

terrain is first computed. The vertical distance of the points to this 

approximate surface is then used in a weight function to assign 

weights to all points. Points above the surface are given a small weight 

and those below the surface are given a large weight. In this way the 

recomputed surface is attracted to the low points. 
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An extensive review of literature was made to assess unique applications of LIDAR filters with a 

view to implement and/or improve techniques to be sued for this project. These unique 

application include Automatic object detection (Aktaruzzaman and Schmitt 2010), Automatic 

structure detection in a point cloud of an urban landscape (Sithole and Vosselman 2003a), 

Segmentation of unstructured point clouds (Bassier et al. 2017), Lidar data classification using 

extinction profiles and composite kernel (Ghamisi and Höfle 2017), Tensor modelling based ALS 

data classification (Li et al. 2016) and Hough-transform and other algorithms for automatic 

detection of 3D building roof planes from Lidar (Tarsha-Kurdi et al. 2007). 

A review of the literature was made to understand current level of accuracy, performance and 

cost associated with the feature extraction process. This would enable an adequate comparison 

to be made with the software development as part of this project and provide as key input in 

aligning with the accuracy required for this project. (Flood 2004) discusses on ASPRS guidelines 

for vertical accuracy reporting of Lidar data. Effect of Lidar data density on DEM accuracy is 

detailed by (Liu et al. 2007). (Stoker et al. 2016) discuss evaluation of single photon and Geiger 

mode Lidar for 3D elevation program. Linear Lidar versus Geiger-mode Lidar - impact on data 

properties and data quality by (Ullrich and Pfennigbauer 2016) provided a background material 

should the findings from this project be expanded to include future state-wide capture using 

Geiger Mode Lidar methods. Modelling vertical error in Lidar derived DEM has been dealt by 

(Aguilar et al. 2010).  

Methods to assess the performance of a Lidar algorithm were available in literature. These 

include: 

¶ Global and local context ς spatial coverage possible, larger the better (Sithole and 

Vosselman 2003a); 

¶ Computational efficiency ς Time taken to perform filtering (Sithole and Vosselman 

2003a); 

¶ Data structure ς in (Sithole and Vosselman 2003a) single data structure represented 

by the profiles and line segments used for both segmentation and classifications with 

no fall back on other data structures nor other support data derived, assists to speed 
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up the algorithm; in (Sithole and Vosselman 2003b), some filters work on raw point 

clouds while some work on resampled image grid; 

¶ Verticality ς ability to handle surfaces lying vertically above each other (Sithole and 

Vosselman 2003a); 

¶ Adaptability ς for solving different detection tasks (Sithole and Vosselman 2003a); 

¶ Point density ς evaluation of filter performance based on Lidar point density 

(Vosselman 2000); 

¶ Lidar data noise ς accounting for Lidar data noise and final data precision (Vosselman 

2000); 

¶ Type I vs. Type II Errors ς Errors in Commission or Omission (Sithole and Vosselman 

2003b) 

¶ Performance in Steep Slopes ς Different performance criteria to flat terrain (Sithole 

and Vosselman 2003b) 

¶ Working around special features (such as bridges) ς  (Sithole and Vosselman 2003b) 

¶ Assessment of outliers ς  (Sithole and Vosselman 2003b) 

¶ Performance on areas with vegetation on slopes ς  (Sithole and Vosselman 2003b) 

¶ Effect of Lidar resolution ς  (Sithole and Vosselman 2003b) 

¶ Test neighbourhood ς Filters operate on a local neighbourhood; Algorithms can 

perform three kinds of comparison: Point-to-point (compare known point to classify 

unknown point); Point to Points (compare known point to classify unknown points); 

Points-to-points (compare known points to unknown points) (Sithole and Vosselman 

2003b); 

¶ Measure of discontinuity ς άmost algorithms classify based on some measure of 

discontinuity. Some of the measures of discontinuity used are, height difference, 

slope, shortest distance to TIN facets, and shortest distance to parameterised 

surfacesέ (Sithole and Vosselman 2003b); 

¶ Filter concept ς άevery filter makes an assumption about the structure of Bare Earth 

points in a local neighbourhood. This forms the concept of the filterέΥ Slope-based ς 

slope or height difference between points measured and classified based on a 

threshold; Block-Minimum ς Horizontal plane with specified buffer zone to classify 

points in or out of buffer; Surface-based ς parametric surface with corresponding 

buffer zone to identify bare-earth points; Clustering / Segmentation ς if points 
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cluster above its neighbourhood then it must belong to an object (Sithole and 

Vosselman 2003b) 

¶ Single vs. Iterative processing ς Recursive vs non-recursive with advantages in 

computational speed for single pass versus accuracy in multiple pass (Sithole and 

Vosselman 2003b) 

¶ Replacement vs. Culling ς  (Sithole and Vosselman 2003b) 

¶ Use of first pulse and reflectance data ς  (Sithole and Vosselman 2003b) 

 

There are multiple papers that were explored to find methods of utilising a fusion of Lidar and 

Imagery. Table 2-2 shows some studies that have utilised an imagery and Lidar fusion feature 

extraction method. 

Table 2-2: Studies with feature extraction using Image and Lidar fusion method 

Developed by Method 

(Cheng and Weng 2017) Urban road extraction from combined high-res sat image and ALS 

(Du et al. 2016) Building change detection using old aerial images and new Lidar data 

(Gerke and Xiao 2014) Fusion of ALS point clouds and images for supervised and 

unsupervised scene classification 

(Hermosilla et al. 2011) Evaluation of automatic building detection approaches combining 

high resolution images and Lidar data 

(Hu, X. et al. 2004) Automatic road extraction from dense urban area by integrated 

processing of high-res imagery and Lidar 

(Kim and Medioni 2011) Urban scene understanding from aerial and ground Lidar 

(Meng, Currit, Wang, et al. 2010) Object-oriented residential building land-use mapping using Lidar 

and aerial imagery 

(Peng and Zhang 2016) Building change detection combining Lidar and ortho image 

(Rottensteiner et al. 2003) Detecting buildings and roof segments by combining Lidar and 

multispectral images 
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(Schenk and Csathó 2002) Fusion of Lidar and aerial imagery for a more complete surface 

description 

(Sohn, Gunho and Dowman 

2007) 

Data fusion of high-res satellite imagery and Lidar for automatic 

building extraction 

(Wang, H. and Glennie 2015) Fusion of waveform Lidar and hyperspectral imagery for land cover 

classification 

(Wang, L. and Neumann 2009) Automatic registration of aerial images with un-textured aerial Lidar 

data 

(Zhou and Zhou 2014) Seamless fusion of Lidar and aerial imagery for building extraction 

(Robinson et al. 2014) Multi-scale smoothed, 90m digital elevation model from fused ASTER 

and SRTM data 

(Huang et al. 2011) Information fusion of aerial images and LIDAR data in urban areas: 

vector-stacking, re-classification and post-processing approaches 
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3 Study Area and Data Acquisition 

3.1 Background 

Lidar and Imagery of various resolutions were acquired at selected test sites. This section 

discusses the rationale behind the selection of those test sites and the data acquired.  

Two sites with rural and urban characteristics were selected to ensure that the developed 

fence-line detection algorithm was able to detect fences for different kinds of built-up areas. It 

was assumed that the terrain and fence-lines in the two selected areas would serve as 

representative site for most other areas in Australia or New Zealand.   

3.2 Terrain characteristics 

Natural and man-made features such as vegetation, power-lines, open spaces, road structures 

and other man-made features are present in both the suburban and rural areas. The two 

selected sites have differing elevation changes in the terrain, and the fence-lines have their own 

characteristic differences. In both the areas, fences with different construction materials such 

as wooden, metal colour-bond and chain-wire fences are present. Fences are wholly or partially 

visible, and fences have hedges running alongside them, which has led to algorithms 

misidentifying the fence-lines. 

The purpose of looking into variations in the study area is to train the future fence detection 

algorithms to work as efficiently in multiple environmental conditions. While designing data 

capture strategy for this project it was considered appropriate to design strategies that best 

suited the upgrade requirement by extracting fence-lines in both rural and urban areas.  
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3.3 Study area  

Two representative rural and urban study areas were identified for the workflow development. 

Morayfield in the north of Brisbane was identified as a representative test area in a semi-urban 

environment, while Toowoomba in the west of Brisbane was selected as a representative area 

for a rural test site.   

3.3.1 Semi-urban test area: Morayfield 

This area is representative of a semi-urban environment with relatively smaller property sizes 

with distinct fence-lines. An outline of the test areas is shown in Figure 3-1 (a) and (b) with the 

location of the study area and an image taken over the study area. 

 

 

Figure 3-1: (a) Extent of the Project area in Morayfield, and (b) Areal image of the Project area 

 

3.3.2 Rural test area: Toowoomba 

A second pilot area, representative of rural property is in the outskirts of Toowoomba, a city 

west of Brisbane. The area consists of relatively larger property sizes with different type of 

fences (usually posts connected by metal fences) compared to the Morayfield test site. An 
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outline of the test areas is shown in Figure 3-2 (a) and (b) shows the location of the study area 

and an image taken over the study area. 

 

Figure 3-2: (a) Extent of the Project area, (b) Areal image of the Project area 

 

3.4 Existing Data 

Lidar and Imagery data was available over the Toowoomba pilot area from the archive held by 

DNRME. Free test data was made available by RPS Australia of 24ppsm including stereo image 

for the initial development of the processing workflow while waiting for the data acquisition 

over Morayfield. 

The project initially used the following data for workflow development, however since one of 

the objectives of the project was to evaluate feature extraction at various resolutions, it was 

decided to acquire Lidar and Imagery over Morayfield (see Section 3.5) to ensure that data 

captured at the same flight over the same area was utilised for evaluation: 
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Morayfield initial data: 

Aerial Lidar: There were 8 tiles of LIDAR point cloud provided with a point density per tile that 

varies between 4-8ppsm. Fusing of point cloud data from 8-Lidar tiles thus yielded a combined 

point density of approximately 24ppsm. 

Aerial Photo: There are 72 RGB aerial images with a GSD of 8cm. The photos have adequate 

overlap for bundle block adjustment and have the required interior and exterior orientation 

parameters. 

  

Toowoomba: 

Aerial Lidar: The Lidar point cloud consists of a single tile covering approximately 30 sq.km 

(5km X 6km area) where the average point density is approximately 2-3ppsm. 

Aerial Photo: An ortho-photo at 10cm GSD available for the area was clipped to match the 

extent of the LIDAR tile. 

 

Adelaide, South Australia: 

Aerial Lidar: The Lidar point cloud consists of multiple square tiles over the CBD of Adelaide 

with an approximate point cloud density of 20ppsm. 

Aerial Photo: An ortho-image probably captured simultaneously with the Lidar data was 

provided to the project along-with the digital cadastre and control point vector shapefiles.  

 

Geiger Mode Lidar, USA: 

Aerial Lidar: A Geiger Mode Lidar point cloud over USA was made available for a small area 

with an approximate point cloud density of 32ppsm. 

Aerial Photo: A small imagery file of low resolution that marked the area of interest in graphics 

was provided, however as this was of a very low resolution, this was not used.  
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3.5 Data acquisition 

Additional high-density airborne Lidar data using Trimble AX60i sensor (Appendix 10.3) was 

captured over the Morayfield area. The combined point density for the multiple flight lines 

resulted in most areas with a density of 50 to 100 points per square metre. 

Multiple overlapping flight-lines were flown to achieve a higher density combined point cloud. 

Aerial imagery was simultaneously captured using AICP65 Pro camera with 6cm GSD that 

resulted in overlapping stereo imagery used for ortho-rectification.  

(Figure 3-3 Left) shows the photo centres of imagery data capture and (Figure 3-3 Right) shows 

the flight lines. There are 34 flight lines in total, 17 each in the north-south and east-west 

direction. A total of 68 Lidar scenes were captured while the total number of imagery captured 

was 1156. 

  

Figure 3-3: (Left) Photo centre over Morayfield for aerial imagery data capture, (Right) Flight lines for 
Lidar and Imagery data capture 
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3.6 GPS Field survey 

After the Lidar and Imagery data capture, GPS field survey (Figure 3-4) was done to verify the 

accuracy of the Lidar data and for ortho-rectification of stereo imagery. Five locations that 

could be identified in the imagery were selected. These selected locations were flat planes of 

around 1m2 to enable Lidar data validation as per ASPRS Guidelines for vertical accuracy 

reporting for Lidar Data (Flood 2004). In addition three permanent marks were selected to tie it 

to the national datum and the CORS network of Caboolture used for initial data processing. The 

final data processing was done using AUSPOS solution (Table 3-1).  

 

 

Figure 3-4: GPS Field Survey locations 
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Table 3-1: Extract from AUSPOS Solution for GPS Field Survey Calculations 

 

MGA Grid, GRS80 Ellipsoid, GDA94 

 

 

 

 

 

 

 

 

Reference Stations used for the AUSPOS solution 
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3.7 Image Ortho-rectification 

Image ortho-rectification was done for captured data in Morayfield in a software called Icaros 

One Button using camera parameters shown in (Appendix 10.1) and photo centre coordinates 

from on-board navigation systems.  

The Imagery was captured at 6cm GSD and had multiple overlaps from both north-south and 

east-west flight directions (Figure 3-5 Top). The ortho-rectified image using the supplied photo-

centre coordinates showed that there was a systematic shift of 1.2m (Figure 3-5 Middle) in all 

the images with respect to data captured by Lidar systems. As both Lidar and Imagery had been 

captured at the same time from the same plane using the same reference CORS station, the 

shift could be attributed to the accuracy attained by the GNSS system for the camera.  

The images were ortho-rectified again using coordinates obtained from the GPS field survey 

and DEM from Lidar, and the result of the ortho-rectification showed good match with lines 

obtained from Lidar (Figure 3-5 Bottom).  
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Figure 3-5: Image capture and processing (Top) Aerial photo of 6cm GSD; (Middle) Systematic shift 
noticed during ortho-rectification; (Bottom) Ortho-rectified imagery using GPS ground control 
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Discussion: The initial ortho-rectification demonstrated that there is a potential for error 

through systematic shift during ortho-rectification which can lead to incorrect positioning of 

cadastral data. It is not certain whether it is quite common for ortho-rectified imagery supplied 

to the department to have these systematic errors or whether they have been ortho-rectified 

using ground control and errors minimised. 

Therefore, it is recommended that imagery should be ortho-rectified using GPS field survey 

coordinates and high-resolution DEM preferably obtained from Lidar to improve the results of 

feature extraction or data validation as demonstrated by the improved result of line-fit based 

on the new ortho-rectification. 
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4 Methodology 

4.1 Background 

This section addresses objective one of this research. High density Lidar data complemented by 

high-resolution imagery was used in the development of an independent as well as an 

integrated workflow for extraction of fence-lines to be used for DCDB block-adjustment. The 

data for the project were sourced from multiple sources including conducting a flight for data 

acquisition for high-resolution latest data.  

The project draws ƻƴ ŜȄƛǎǘƛƴƎ ŜȄǇŜǊǘƛǎŜ ŀƴŘ Ǉŀǎǘ ǊŜǎŜŀǊŎƘ ƻǳǘǇǳǘǎ ŦǊƻƳ ǘƘŜ /w/{LΩǎ άCŜŀǘǳǊŜ 

9ȄǘǊŀŎǘƛƻƴέ tǊƻƎǊŀƳΣ ƻǘƘŜǊ ŜȄƛǎǘƛƴƎ ǊŜǎŜŀǊŎƘΣ ŀƴŘ 9{wL !ǳǎǘǊŀƭƛŀ ŀƴŘ IŀǊǊƛǎ DŜƻǎǇŀǘƛŀƭΩǎ 

expertise. This existing body of knowledge was adapted to apply and extend these capabilities 

to optimally address the needs of the project.  

The specific requirements of this project was to extract fence-lines which are narrow linear 

features at a given elevation range and have a range of characteristics. Empirical assessment of 

the different data sources in various combinations was undertaken based on both cadastral 

data and ground truth information.  

Various candidate 2D and 3D feature extraction tools were selected and evaluated before 

finalising an independent workflow for Lidar data plus an integrated workflow for imagery and 

Lidar data which extracted fence-lines to be used form block adjustment of digital cadastral 

data. 

The evaluation of the data, the workflow, and the feasibility of utilising the results for cadastral 

upgrade included the determination of geo-positional biases between the digital cadastre and 

land parcel boundary segments extracted via the feature extraction approach for fence-lines. 
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4.2 Research Steps 

4.2.1 Project set-up, Literature Review and Planning 

A comprehensive literature review of research into feature extraction from Lidar and Imagery 

was undertaken. It also included existing work in upgrading the cadastre via imagery and Lidar, 

from aerial & space-borne platforms.  

This review of research revealed that while there are numerous existing feature extraction 

methodologies and applications that have been used to delineate linear features, yet there are 

no research that have focussed on extracting the fence-lines with a view to move the graphical 

representation of the digital cadastral boundaries with geo-position inaccuracies to the ground 

positions accepted by landowners.  

Further, the existing research revealed that while there have been capabilities to extract a 

power-line, there have been no research to explore the feasibility of extracting a narrow 

feature such as a fence that may be built using various construction methods, have various 

heights above the ground, often have hedges running along it, and are often obscured by 

existing trees and man-made structures. 

4.2.2 Accuracy requirements for Queensland cadastre 

An investigation into the existing accuracy of Queensland cadastre, the accuracy requirements 

associated with cadastral upgrading, and that achievable through the adopted methodology 

was undertaken.  

The starting point for exploring the workflow was through high-resolution Lidar data. After 

multiple algorithms and workflows and been explored, the adopted workflow was tested for 

different resolutions of Lidar data and an integrated Lidar plus Imagery workflow. High-

resolution Lidar data and Imagery were acquired of appropriate resolution and geo-positional 

accuracy. High-resolution Lidar data has demonstrated a capacity to identify linear features 

such as power-lines. Thus, it was expected that a similar resolution Lidar would assist in 

identifying fence-lines, and high-resolution imagery can be used as a complement to produce 
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an integrated boundary detection tool. However, it is noted that this detected boundary lines 

may or may not coincide with a property boundary. 

4.2.3 Study area identification 

Identification of the pilot project area and associated data sources, were done carefully noting 

the requirement to include both urban and non-urban environments and the desirability of 

having access to multiple sources of data.  

Also, at least one of the areas needed to be in a location where it would be feasible to acquire 

suitable imagery and Lidar data while maintaining the selected terrain characteristics, noting 

that resolution requirements and accuracy tolerances in rural areas need not be as stringent as 

those in cities and towns. 

4.2.4 Manual feature extraction and accuracy analysis 

An initial manual feature extraction and upgrading exercise was performed, the aim of which 

were: 

i. To validate the overall upgrading workflow envisaged for the semi- and fully 

automatic method being developed and tested; 

ii. To assess the metric performance of the various data sources, and verify that the 

accuracy of the feature extraction could be comparable to a relatively spatially 

accurate cadastre;   

iii. To assess the feasibility of block adjusting a distorted cadastre into its expected 

spatial location using the extracted fence-lines and derive metrics of evaluation of 

accuracy;  

iv. To provide the benchmark or control data against which the semi- and fully 

automatic methods were evaluated. 
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4.2.5 Evaluation of alternative methods 

Several different methods of feature extraction from Lidar, Imagery and Integrated methods 

were explored. The results were evaluated and some of the methods were discarded while 

parts of some of the methods were used for the final processing workflow that was adopted. 

4.2.6 Processing pipeline and software development plan 

This phase involved identification of the series of manual steps for the development of software 

to support the automated extraction of cadastre-relevant features from the imagery and Lidar 

data, with appropriate analytical functions to quantify geo-positioning discrepancies with 

respect to the existing digital cadastral data. Several methods were explored and finally a 

workflow for Lidar and another for integrated Lidar plus Imagery was finalised with an overall 

workflow shown in Figure 4-1, and detailed processes shown in Figure 4-14 and Figure 4-15.  

 

 

(Lidar) 

 

 

 

(Imagery + Lidar) 

 

Figure 4-1: Processing overview for (Top) Lidar data and (Bottom) Integrated Imagery and Lidar data 
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4.2.7 Automated feature extraction and data analysis 

A workflow/processing pipeline to support the application of the adopted (semi/fully) 

automated feature extraction tool for the extraction of fence-lines was developed and 

packaged in a graphical user interface (GUI).  

The new software developed to support the automated feature extraction/upgrading stage 

included an independent process for feature extraction from Lidar and an integrated feature 

extraction method from Lidar and Imagery.  

The output of the feature extraction process primarily comprise of linear features forming 

initially non-concatenated boundary segments represented by fences which can be used as is or 

cleaned to extend to the intersections from which cadastral lines or polygons can be block-

adjusted. The extracted line features are then be compared to the current cadastral database 

to ascertain the spatial accuracy of the extraction as well as the cadastre and to quantify 

corrections, mostly geo-positional biases, which need to be applied to the cadastral data. 

4.2.8 Evaluation of feature extraction 

An experimental evaluation of the semi- and fully automatic feature extraction and cadastral 

upgrading methodology was undertaken for the developed workflow over a range of different 

sites, from urban areas through to rural properties.  

The purpose here is to fully assess the developed workflow in terms of its practicability, 

accuracy, completeness, and general reliability as a means of automated upgrading of the 

cadastre to the required levels of accuracy. 

4.2.9 Reporting and recommendations: 

This document is prepared to report on the outcomes of the research. This addresses: 

i. Achievable accuracy from available data sources used in isolation and in 

combination; 

ii. Recommended software tools and capabilities; 

iii. Technical challenges and limitations of the approaches used. 
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The report also makes recommendations on future work and options for operational 

implementation. 

4.3 Methods of Feature Extraction Explored  

4.3.1 Overview of Methods Explored 

Several methods were explored for ways to extract fence-lines, either from Lidar, or Imagery or 

combined. The processing methods on their own had some things that worked and some things 

that did not, so the learnings from what worked and what did not was used to develop a 

processing workflow that was further used to create a GUI for Lidar processing and an 

Integrated Lidar and Image processing workflow. The various processes explored are listed in 

Figure 4-2 below and further details about the processes are discussed in Sections 4.3.2 to 

4.3.8. 

 

 

 

 

 

 

 

 

 

Figure 4-2: Various processes explored for fence-line extraction 
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4.3.2 Method using Power-line Extraction Parameters 

Power-lines vectors can be identified to be an entity closest to fence-lines in terms of narrow 

elongated features with specific height attributes. The key difference is that power lines are 

much taller than a typical fence line and can be extracted as a continuous linear feature with 

clear return numbers in Lidar data capture.  

There are usually very little differences in construction material for power-lines compared to 

fences, hardly any confusing vegetation running alongside it as in hedges running along fences, 

and geometrically, fence-line vectors are relatively shorter in length and often connected at 

right angle to each other or incomplete at the front of the houses.  

 

 

 

Figure 4-3: Workflow for Powerline Extraction Algorithm 

 

The first step in the extraction process was to extract all the typical features in the scene except 

for powerlines and leave rest of the points as unclassified that could potentially represent fence 
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The algorithm does a decent job of identifying fence-lines in the raster version, but it also has a 
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(Figure 4-4 and Figure 4-5). It also identifies a number of other features at the same elevation 

range (false positives), and since the powerline algorithm is a black-box in the ENVI 

environment, it is limited to be used in an ENVI environment. Therefore, parts of the process 
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was used for the final workflow which was developed in an open source IDL as well as an ENVI 

IDL version. 

 

Figure 4-4: Points in white represent fence but other unclassified points are classes as fence as well 

 

Figure 4-5: Fences detected using powerline algorithm showing false positives and omissions 
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4.3.3 Lidar Surface Difference Method 

Digital Surface Model (DSM) represents the elevation of features on the surface along with 

elevation of the ground, while Digital Elevation Model (DEM) represents the elevation of the 

ground in the scene.  

The fence-lines extracted from various methods have false positives along the ground such as 

kerb lines and other low lying features. One option to get rid of these false positives is to use 

remove the ground level information from the elevation models. This involves subtracting DEM 

from DSM to create a model that hold just the surface elevation information where each pixel 

represents the elevation of the underlying pixel (Figure 4-6). This can then be filtered according 

to the range of fence heights and exported.  

The problem with such an approach was due to software limitations where DEM and DSM were 

extracted at different pixel resolutions resulting in loss of information due to varying resolution. 

Additional steps were also required to bring them to the same resolution and there were 

difficulties in additional filtering for features other than fences. It was also difficult to cluster 

the point cloud to a single fence-line vector and to ensure that fences were selected and no 

other ancillary objects such as hedges. This process however had its merits with the surface 

difference model and this idea was implemented in the final workflow. 

 

Figure 4-6: Surface difference from DSM-DEM derived from Lidar 
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4.3.4 Lidar Surface Difference on Imagery Output 

Edges detected from image based feature extraction could be used in combination with surface 

difference model to improve the results of the extraction by removing noise. There is a marked 

improvement in the result as many false positives on the ground and within the building 

envelope are now eliminated as relatively accurate object heights can be used to eliminate 

ground features such as roadside kerbs (Figure 4-7). Parts of this method was used in the 

integrated image and Lidar based method developed as a GUI. 

 

Figure 4-7: (Left) Lidar surface difference model, and (Right) Extracted fence-lines on imagery 

4.3.5 Lastools Direct Height Filter Method 

Appendix 10.5 describes the approach used to filter out fence-line raster (Figure 4-8) using 

methods described in individual tools in Lastools documentation. These processes provide good 

results in raster and is necessary for developing part of the input raster for use in the Open 

Source IDL GUI developed for the project.  
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Figure 4-8: Fence-line raster filtered using Lastools 

4.3.6 Image Edge-Detection Method 

Various options for edge detection from imagery are available. Figure 4-9 shows the result of 

edge-detection operation on a single band of the RGB image. A large number of features, trees 

and most of the linear features are extracted from the image. There are some false positives 

that can be removed by superimposing either the building raster or building footprints (Figure 

4-9 Bottom). One disadvantage of this method is inconsistency of results based on image 

characteristics, capture of shadows, and displacement of fence-lines due to look angle. 

Parts of this method was used to develop the integrated Imagery and Lidar fence-line 

extraction method in the GUI. 
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Figure 4-9: (Top) Edge detection shows a large number of edges; and (Bottom) Buildings overlaid on the 
edges 
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4.3.7 Image-derived Point-Cloud Filter Method 

Dense point clouds can be generated using image matching methods using photogrammetric 

methods to take advantage of forward and side overlap in images and known acquisition 

geometry (Figure 4-10).  

One important reason for investigating this aspect in this research is it explore whether it will 

help to substitute and/or supplement aerial Lidar derived point cloud in areas where no such 

capture is available. An initial assessment was made to judge the suitability of utilising 

photogrammetric point cloud derived from aerial images.  

 

Figure 4-10: Dense point cloud generated from stereo-pair images by image matching 

 

Figure 4-11 shows the results of feature extraction of fence-lines using point clouds based on 

aerial imagery. Initial assessment of the resulting fence-line shows many false positives and far 

more omissions. For image-based point clouds, viewing geometry can cause difficulty in image 

matching. Furthermore, shadows often associated with the fence-lines and a lack of contrast 

with the immediate background cause issues with this extraction method. It was thus 

concluded to not explore this any further, and that while using imagery, image-based feature 

extraction may be better suited than derived point-clouds for feature extraction.  
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Figure 4-11: Feature extraction from aerial image derived point cloud 

4.3.8 Image Segmentation Method 

Image segmentation was explored in ENVI software using an ortho-rectified imagery. Object 

based Image analysis (OBIA) provided benefits such as additional segmentation parameters for 

image analysis such as texture, spectral and spatial attributes.  

The spectral brightness of the fence-lines, the spatial properties such as area, elongation and 

length of the features; and the texture of the image were used to extract the fence-lines (Figure 

4-12). The results varied between different areas and different parameters had to be 

determined for different areas based on several iterations of what worked for that image and 

area. The resulting fence-line extraction had false positives and omissions (Figure 4-13). 

Therefore, this method was not explored any further. 
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Figure 4-12: Image segmentation rule creation window with moving overview window 

 

 

Figure 4-13: Fence-line extracted using image segmentation with false positives and omissions 
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4.4 Considerations for Fences and Corresponding Algorithms 

From exploration of the various methods for feature extraction, it was determined to use parts 

of the methods that worked. It was thus necessary to define the fence characteristics that 

would be necessary to be considered for further development of an algorithm. This section 

discusses the characteristics of fences and how these characteristics are considered in the 

algorithm (Table 4-1). 

 Table 4-1: Fence-line characteristics and algorithm considerations 

Fence-line characteristics Algorithm consideration 

a. Fences are long and relatively thin features 

b. Fences may have gaps in data due to inherent 
gaps (gates etc.), visibility gaps (fence blocked by 
vegetation, buildings or sheds) 

1. Use an elongation ratio (length/width) threshold 

2. Select minimum length tolerance to eliminate 
segmented and spurious lines 

3. Use a maximum gap tolerance along identified 
fence-lines for line fitting 

3. Eliminate larger areas in the processing that are 
not a result of (large length value X small width 
value) 

a. Fences have hedges growing next to them; 

b. Fences can be made of hedges 

 

 

 

1. Use the RANSAC algorithm to select the most 
probable line with a maximum cluster distance 
threshold 

2. Utilise vegetation removal kernel radius 
threshold in 2D beyond which points are not 
considered 

3. Iterate to test if points eliminated previously can 
be included between the segments 

a. Fences generally have elevation ranging 
between 0.5m to 2.0m 

b. Fence-lines may be confused with other linear 
lines such as buildings, powerlines, road 

c. Fences may have high vegetation covering 

1. Eliminate lines formed on bare earth, buildings 
or high vegetation; 

2. Use a filter that selects point cloud between 
0.5m-2.0m for the analysis 

3. Identify and remove buildings, powerlines 

4. Identify and remove trees 
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a. Fences are usually in cardinal directions but can 
be any direction in between; 

b. Fence joins are close to 90 degrees 

1. Use directed convolution filters to identify edges 
in cardinal and diagonal directions (imagery); 

2. Calculate curvature to eliminate non-straight 
lines 

3. Eliminate joins with an angle greater than a 
specified threshold 

There are different types of fences (e.g. 
continuous paling fences, hedges, post and wire 
fences etc.) 

1. Different fences return different concentration 
of Lidar point clouds, so use different settings for 
line gaps etc. in the .json files 

a. In flat surfaces, fences usually have the same 
height throughout a single line; 

b. Cars etc. at a similar height range have a plane 
surface 

1. Use a z-component of plane fit over normal 
vector, i.e. plane fit over original point clouds 

2. Use a tolerance threshold to eliminate points 
outside a given z-plane 

3. For fences on sloping ground where the z-plane 
changes rapidly, not use this component 

 The choice of filter/kernel and its parameters used to detect the fence-line features can have 

varying degrees of influence on the accuracy of the extraction. After exploring the relative 

merits of the various aspects, the following factors were selected that formed the core of the 

algorithm development: 

¶ Maximum height above terrain to look for fence points 

¶ Minimum height above terrain to look for fence points 

¶ Minimum number of points in a cluster to be considered to be part of a fence 

¶ Distance between points to fit linear features 

¶ Maximum gap along fence to fit lines 

¶ Minimum length of fence-line segments  

¶ Kernel radius to remove vegetation near fence-lines and its threshold 

¶ Exclusion of points as fence-lines based on previous classification  

¶ Parameter for adding back a point if a line is subsequently detected 

¶ Distance threshold for points for fitting a plane (to extract fence-lines) 
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4.5 Workflow developed for Fence-line detection using Lidar 

A linear workflow was developed for the fence-line extraction. The philosophy behind the 

development of this workflow was to make it as semi/fully ς automated as possible and also to 

provide users various options to choose algorithms and parameters that suited the available 

Lidar point-cloud density.  

Three parameter files were developed based on the point cloud density of the available data: 

Low/sparse density; Medium density; and High density, that broadly reflects real-life data 

capture scenarios. The workflow also caters for advanced users to modify fence-line extraction 

parameters as an iterative process to improve the overall extraction results. 

An important consideration in the design of the workflow (Figure 4-14) is to cater for varying 

quality and geographic coverage of the data that is likely to be used in a jurisdiction. Thus, 

variability in point densities was addressed by developing algorithms that is parameterised 

using a model that caters for three densities described in Table 4-2. The three different 

parameter files are dependent on the density of Lidar points per square metre (ppsm) and 

various other considerations (More details in Appendix 10.6).  

Table 4-2: Lidar Density vs. parameters to be used 

Lidar Density PPSM Range Terrain type JSON File to use 

Low > 4 ppsm Mostly Rural ParamSparseData.json 

Medium 4 ς 20 ppsm Rural to Urban ParamMediumDensityData.json 

High < 20 ppsm Urban ParamHighDensityData.json 
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Figure 4-14: Workflow for Fence-line extraction using Lidar data 
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As the spatial extent of Lidar point-cloud coverage could be large, and to make allowances for 

various computational capacities, the algorithm provides an option to process these files by 

splitting them as rectangular processing grids defined by users to cater for the size of the area 

being used for fence extraction.  

The workflow is also designed to refine the result with a SVM based self-learning model that 

allows users to guide the extraction process by training the model with user identified correct 

versus incorrect feature extractions to refine the final output. 

The key steps in the workflow are described as follows: 

a. Select the input LAS file (or a collection of Las files), assess point-density which in turn 

would allow in the selection of the parameters of extraction; 

b. Split the LAS file into desired rectangular grid sizes and select a processing AOI 

c. Process the Lidar and extract fence-lines 

d. Review and refine the vectors and the training model and output the fence-line vectors 

 

4.6 Workflow for Fence-line detection using Integrated Imagery and Lidar 

The approach taken consists of multiple steps in order to derive line segments from imagery 

(Figure 4-15).  

Edge Detection: Using the Canny edge detection algorithm, edges can be extracted efficiently 

from imagery. The image was processed in tiles of 256x256 pixels at a time. The Canny 

algorithm returns many more edges than are desired to be included. Most notably, vegetation 

and textured roofs returns high concentrations of edges.  

Clustering: Clustering of adjacent (contiguous) pixels in the Canny edge detection output is 

performed next to identify and further process groups of pixels to see if they should be 

included or excluded. Each contiguous group of pixels is then passed in to the next step in the 

algorithm.  



49 

 

 

Figure 4-15: Workflow for Fence-line extraction using Ortho-imagery and Lidar Relative Elevation 




































































































































































