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Summary:

Background The digital cadastre is one thfe most fundamental spatial layers that are used by
various organisations, however, the gpositional accuracy of the digital cadastre is variable
which causes numerous problems. The traditional sast upgrading the spatial accuracy is
very timeconsumng and costly. This project explores the feasibility of samtomatic or
automatic feature extraction of feneknes usingLidarand Imagery as well as evaluate the
feasibility of using these fendaes for upgrading the digital cadastre and the acci@sc

obtained.

Objectives The objectives of this project is to evaluate the suitability of imageryLadakfor
upgrading the spatial accuracy of digital cadastre; assess the accuracy achievalh timese
methods; develop (sen)i automatic feature etxaction methodologies and assess applicability
for operational implementation; and provide recommendations on application of imagery and

Lidarfor the upgrade of the digital cadastre.

Data As the deeloped methodology was expected to operate on bothamtand rural areas,
Lidardata (2ppsm) and Imagery (10cm QSias available for a rural area near Toowoomba
and for a semurban area at Morayfield both in Queensland. The data for Morayfield was
captured over two different times and had different combined point density (24 ppsm and 64
ppsm), while the ground samipl distance for the imagery were 10cm and 6 cm respectively.
The MorayfieldLidardata was verified using differential GPS field sunwbych demonstrated

that the RMSerror for vertical accuracy dhe Lidardata ranged between 3mm to 8t The

GPS fieldurvey coordinates was further used for image rectification. Digital cadastral data was
available for both the areas. Furthérdar, imageryand cadastral data was made available for
Adelaide, South Australia for testing of the algorithm muaban area wth different fenceline

characteristics.
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Methodology.: A multipronged approach in feature extraction was used to evaluate the
suitability d imagery andLidar for extracting linear features (fendames) with a view to
upgrading the spatial accuracy of digital cadastre. A critical part of the development effort was
to ensure that the method was suitable to cateravariety of data sourcesrger wide ranging
environment for the capture and availability of data sources. It was also considered critical for
development of a GUI with a usétendly framework forquality assessment and refinements

of the result. The method was designetd automate a majority of the steps in the selected
workflows. After initial exploration of multiple feature extraction methods, it was identified
that Lidar based methods (under sparse, medium and kdighsity point cloud collection
conditions) provided more robugeature extractionresults using automated methods and thus
remained the cordocus for the remainder of therpject work. To cater for areas which lacked
Lidar point clouds or benefited from existing imagery, additionahagebased feature
extraction methods were developed to complement thd.idarbased fenceline extraction
methods. The project methodology was thus dgsd to account for use dfidarpoint clouds
collected at various point densities and aerial photos at midtiesolutions. Design of ¢h
methodology also catered for semrban and rural areas that accountetbr physical
differences in actual fence features. Fitgl a GUI was developed wittonsideration given to

the provision ofa ®ftware that was robust an@asy to use either on an ENIDL or aropen

source environment.

Results The developed workflow has shown promising results, with extraction accuracy that
should allow for an accurate adjustment of the existing cadastre. Flameg extracted from
Lida have a combined horizontalccuracy of 0.282mvhile fencelines extracted from imagery
have a combined horizontal accuracy of 0.258m. Although the accuracy of-lvaagd feature
extraction appears to be better, the number of ferloge segments extracté from Lidaris

significanty higher in number
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ConclusionThis aim of the project was to explore the feasibility of udirarpoint cloud and
imagery data for feature extraction leading to improvement of existing cadastral survey using
fencelines. This goal was achieved by thegh testing and development of a workflow for
semirautomated extraction of fencéne boundaries fromairborne laser scanning and imagery
data. To ensure that the developed workflow could be implemented over rural and urban
areas, the study areas were den with such characteristics and with varying data density to
simulate real conditions. Thus, it cae concluded that.idarbased fencdine extraction can be
used, and where necessary augmented by imbgsed extraction using the methods and
workflows dceveloped during this project and cadastral boundaries block adjusted with a very

high degree of confiehce.

Xiv



1 Introduction

The Digital Cadastral Database (DCDB) is the spatial representation of current land parcels in a
jurisdiction. It usually includes lagal Lot on Plan description and relevant attributes and a
graphical represntation of the parcels. The DCDB provides the map base for systems dealing

with land related information.

The DCDB in Queensland was created by digitising existing cadastrahtnaayariety of scales

and accuracies. A positional accuracy value has bdenated to all parcels in the DCDB. The
value reflects the maximum error status of the parcel and has been derived from the capture
process or assigned as the spatial accuracthe DCDB has been upgraded. The maximum
error in the DCDB is currently -463m. The maximum error status is based on an assumed

plotting accuracy for the source mapping.

Stakeholders rely on the graphical representation of the parcels to be spatiallyade. Since

the initial capture of the DCDB from paper based maps, datesum®e now utilising the data in
ways that requires a higher spatial accuracy than was achieved in the initial capture. The
difference in the position of the DCDB is visible terasvhen overlaid over aerial and satellite
imagery. Councils, utilities arather agencies involved iassetmanagement now have highly

spatially accurate data of their assethich they attempt to link to the DCDB

This project eglores the extent to whih Lidardata, in cases complemented by higésolution

aerial imagery can be used to upgrade the spatial accuracy of the digital cadastre. Automated
and semiautomated feature extraction are employed to detect, extract and validate the
location of naturaland manmade features which may indicate the location of property
boundaries, and these are correlated with existing digital cadastral data in order to identify and

rectify geapositional biases within the existing digital representation of the cadastre.

The primary focus of the project is upon enhancement of the absolute accuracy of the cadastral
database rather than upon its relative accuracy, though overall spatial accuracy upgrading in

non-urban areas are also addressed. The project centres upon twio reseach components.



The first involves the selection and evaluation of candidate 2D and 3D feature extraction tools.
The second comprises a pilot study, largely empirical in nature, which involves the
determination ofgeo-positionalbiases between theligital cadastre and land parcel boundary

segments extracted via the feature extraction approach.

The project culminates in this report that not only presents the results of the pilot study and
assesses the relative value of various data sources andréeaturaction methodologies, but

also identifies operational opportunities and limitations.

1.1 Problem Statement

The digital cadastre is one of the most fundamental and important spatial layers maintained by
land agencies across Australia and NZ. It is ugeglioulh G dzZRS 2 F dGR26ya i NBI Y
in a diverse range of applications and provides the frame of reference for a number of other

spatial layers.

Notwithstanding its critical role, the digital cadastre is, in many ways, ndorfppurpose on
accownt of its variable spatial accuragpppendix10.1). The time and cost of upgrading the
accuracy of the digital cadastre by field survey procedures is beyond what thamebgyencies

can realistically afford. An alternativeetihodology is required that brings substantial cost and
productivity gains, while delivering a worthwhile improvement in spatial accuracy, especially

absolutegeo-positionalaccuracy.

Without exceptia, efficiency and productivity gains come at a costthie case of upgrading

the digital cadastre using remote sensing data, there is the potential in certain situations of a
managed accuracy cost being incurred. The question then is: will this alternamote
sensing approach deliver sufficient accurady aa reasonable cost and in a reasonable

timeframe? This is the question to be answered by this project.

The researchproject will in particular,investigate the use of various remotely sensed data,
namely imagery and.idar, and evaluate their suitabilityn the context of upgrading the spatial

accuracy of the cadastre.



The intent is to not only provide an empirical assessment of the alternative technology options,
but to makerecommendations on how and under what conditions, the findings of the project
might be applied in an operational setting by DNRME and, potentially, by other land agencies

across Australia and NZ.

1.2 Project Aim

The aim of this project is to evaluate the fdakiy of utilisingLidarand Imagery to extract

fencelines for geepositionalupgrade of digital cadastre and evaluate the accuracies obtained.

1.3 Project Objectives

1. To develop upgrading methodologies for cadastral data based on automated feature
extraction and to assess their applicability and potential for operational implementation

by partner land agencies;

2. To evaluate the contribution of remotely sensed data sources (e.g. airborne and satellite

imagery, and.ida to upgrading the spatialcauracy of the digital cadastre;

3. To identify, through experimental testing, the accuracy achide from those data

sources individually and in combination

4. To deliver recommendations on how and under what conditions remote sensing data

might be employed foradastral upgrade purposes.

1.4 Research Questions

The following research questions are fornteld which will assist to achieve the aim and

objectives of this project:

1. Isit possible to detect and extract, both manually and automaticallyspgesitional data
using either Lidardata or Qtho-imagery complemented blidardata, to accuracy levels

corresponding to those specified for digital cadastral data?



2.  What spatial resolutions and metric quality of input data are required to meet cadastral
accuracy requiremerst ie. what density ofLidardata and what sources and scales of
imagery (airborne and sallite) are appropriate to support boundary feature extraction

for cadastral upgrade?

3. What developments in, and implementations of 2D and 3D automated feature
extradion are necessary to support semand fullyautomatic workflows and data

processing pipines for the process of upgrading the digital cadastre from imagery?

4. Can the georeferencing of feature data extracted via the developed methodology be
employed to efect an upgrading of the current cadastre to the required accuracy,

primarily the absoluteggeo-positioning accuracy of the digital cadastre?

5. Does the proposed scenario for upgrading the accuracy of the digital cadastre via
imagery andLidardata have potetial in the future for operational implementation by

the relevant custodians of the cadas?

1.5 Project Significance

The autput of the project includegprocedures andassociated processing workflongraphical
user interface and related source codasd computational tools folidar and integrated

imagebasedextraction of fencdines forupgradng the cadastre.

It provides a new and more efficient means to maintageo-positionalaccuracy of the digital
cadastreand is expected t@automate aspects bthe upgrade process which woutdherwise

be anexpensive and relatively slow manual process.

There is wtential for significanscientific ortechnical impact through process automation and a
new approach to cadastral data acquisition and upgradgiagvell as the exploration of new

methods to extract features that are extremely narrow and have aased elevation ranges

The target of this project is land agencies who are custodians of the cadastr@rddesses
developed in this research providm dternative approach to the current, laboumtensive and

expensive land survey or image based teghe for cadastral upgrading



1.6 Benefits of a Successful Outcome

The project demonstratethe benefits of CRCSI R&D expertise in the enhancement/upgrading
of both the accuracy and operational work processes related to an important spatial data set,

namely the cadastre.

The siccessof this projectdemonstrates the capability of the CRC&hd partrer agencies to
work togetherin the conduct and management of applied research that aims to enhance the

business capabilities and products of Government sector @péints.

1.7 Project Deliverables

The preparation of a report that not only presents the resuf the pilot study and assesses
the relative value of various data sources and automated feature extraction/upgrading
methodologies, but also identifies operatidn@pportunities and limitations, and draws
conclusions regarding the prospects for adoptairthe developed rathodology by the partner
agencies Software tools, algorithms, workflow documentation, .edce also made available to

partners for either adoptin or further development.

1.8 ProjectRisks

The &curacy of imagdased cadastral data collaon falls short of requirement3o mitigate
that it is necessary torsure comprehensive initial analysis of data sources & take account of

differing requirements btween urban and nowrban cadastres

Development of automated process, whilemonstrating concept feasibility, may fall short of
operational requirements & thus not be implemented by DNRMBther land agenciesTo
mitigate that it suggested toresure loth developed manual and serautomated workflows

offer practical alternativeg such circumstances



2 Review of Previous Work

This section reviews some of the previous work done in Image processirigdargrocessing
relevant to this project which ifeature extraction for linear features thatvould assist in the

extraction of fencdines for cadastral data ggmositional upgrade.

This section explores some of the work done in image processing first, éolldy Lidar
processing work, which then leads a combinedLidar and Imagery processing field of

research.

2.1 Image Processing

There has been a relatively large body of work for detection of linear/rectilinear features from
LIDARPoiInt cloud and Imagery witharying level of success in feature extranti While some
of these extraction methods may be applied to update the cadastre, no literature were found in
the scope of the search for this project discussing the extraction of fénes for updating the

cadastre.

The focus of this review is therefote explore the availability of methods and techniques that
are used for generalized detection of linear features that could then be extrapolated to
detection of features like fences. The literature discussueaextraction methods using mainly
two datasets, namely Imagery ariddarpoint cloud. The third approach or method is fusing

the information derived from Imagery andDARas a combined method.

Image based methods can broadly described as edge detection methods using one or the other
type of edg detectors. One of the mostopular method for Image based detector is Canny
Edge detecto(Canny 1986; Ding and Goshtasby 2001; Green 2002; Juneja and Sandhu 2009;
Biswas and Sil 2012; Shrivakshan and Chandragekaj



The edge detectors of images usually are of the following type:

Gradient edge detectors detects the edges by looking for the maximum and minimum in the
first derivative of the image(Shrivakshan and Chandrasekar 2Q1@3es first directional

derivative operation and ifades algorithms such as Sobel operdt®harifiet al. 2002)

Laplacian- The Laplacian (Mexican Hat operator) method searches for the zero crossings in the

second derivative of the image to find edgéShrivakshan and Chandrasekar 2012)

Zero Crossing uses second derivative and includes Laplacian aiperand second directional
derivative;(Sharifiet al. 2002)

Laplacian of @ussiang developed by(Marr and Hildreth 1980as a combination of Gaussian

filtering with the Laplacian

Gaussian edge detectors symmetric along the edge and reduces the noise by smoothing the

image; include€annyedge detector;

Coloured edge detectorg divided into three categories of output; Fusion methods, Multi

dimensional gradient methods and Vector methods

Linear Methods- Also known as linear method, it involves discrete approximation of the first

order derivative in a given direction, Pratt°(02, 90°, 13%); Prewitt (compass direction),

| NHef SQa 2LISNI (02N 002Yo0AyYylFiA2y 6AGK DI dzaaAl
GaussianjPeli and Malah 1982)

Non-Linear Methods¢ 2 x 2 or 3 x 3 window, gradient which is defined as the maximum over
n Of the magnitude of the partial derivative in direction. Robertsmax{|f(i, j) ¢ f(i + 1, j +1,
If(i, ] + 1) ¢ f(i + 1, j) Sobel (3 x 3 window); Prewitt(same operato as Sobl, different
scaling); Kirsch; and RobinsdB-level and Sevel, template matching using a set of masks to
determine the existence of an edge and direction); Abdou (extended the masks to larger
window sizes 5 x 5, 7 x 7, 9 x 9); Wallis (Laplammathelogarithm of the intensity); Smith and
Davis (two operators for binary and grey level images that measure the ratio between the
balance of a bmodal distribution and a measure of disorder); Hale (implement a-two
dimensional operator by rotating ene-dimensional operator); Rosenfield (computing

7



differences between averages of nowerlapping neighbourhoods that meet at the same

point); (Peli and Malah 1982)

BestFit Method ¢ 6 SadG FAG 2F | FdzyOQlAz2zy (G2 | 3IABSYy )
parameters based on orthogonal functions from comparison of circle and ideal 2D edge); Abdou
(optimal edge fitting based on discrete image model); Modestino and Fries (deterilter

operation such that its operation on a noisy image is the best approximation to the operation of

Laplacian on the ideal imagé€Reli and Malah 1982)
Severahuthors have developed performance evaluation criteria for edge detectors:

Precision, Reolution and Accurac{Sharifiet al. 2002) Signal to Noise Riat(SNR) and Average
Riskdefined as the ratio of the number of detected edge points which do not coincide with the
ideal edge, to the number of detected edge points evhcoincidewith the ideal edggPeli and
Malah 1982)Error rate, Localisation and Responisg CannyDistribution of the detected true
edge points, developed by Fram and Deutashwell agviaximum likelihood estimate of the
ratio of the total number of true edge points to the totaumber of detected edge points;
Weighted and normalised deviation of the real edge from the lidsdge line, developed by

Pratt;

Further quantitativeperformance evaluation criteria wer@ercentage of edge points detected

on the ideal (desired) edge; Number of detected edge points which do not coincide with the
ideal edge (normalised by the number of points on the edge); Mean width of a detected edge,
defined as the ratio of the total number of detected edge points to the number of ideal edge
points; Weighted and normalised deviation of an actual edge point from the ideal edge as
defined by Pratt; Average squared deviation of a detected edge point finenideal edgeand

Mean absolute value of deviatiqi®eli and Malah 1982)

Additionally, qualitative edge detection performance criteria wefgpe of contour (perfect
edge, broken edge, perfect but broken at critical points such as corner of sg&ng)e or
double edge (a single or two separate edgesidDistortion (shift & the edge)(Peli and Malah
1982)



Edge detectors are expected to have the follogvproperties(Ziou and Tabbone 1998)

Detect propertiesof image such as sktontinuities in the photometrical, geometrical and
physical characteristics. Variations in the grey level of the image include discontinuities (step
edges), locakxtrema (line edges) and edge meets (junctions). Physical edges correspond to
variations inreflectance, illumination, orientation, and depth of surfaces and is proportional to

scene radiance which is represented in the images by the change in intemsitiofu

Smoothing of Image positive effect¢ reduce noise, ensure robust edge detectioregdive

effect ¢ information loss;

Image Differentiationg is the computation of the necessary derivatives to localise the edges
(localise variations of the image grey level and to identify the physical phenomena that
produced them). The differentiationperator is characterised by it order, its invariance to

rotation and its linearity

Edge Labelling localising edges and increasing sigioahoise ratio by suppressing false edges

and involves finding the local maxima along the gradient vector

Multi-detector and Multiscale approacheg common convolution opetors are of the form
(fs*D(x,y) where | is the image; i the filter and s the scale; multiple edge detectors and scales

are necessary for multiple images



2.2 LidarProcessing

Data processingan be automatic or serautomatic and can includeultiple operations such
as filtering, modelling of systematic errors, feature detection and line thing8ithole and

Vosselman 2003b)

Most of the Lidarfiltering methodsfacilitate the extraction of features of interest by filtering
the element that would potentially confuse an accurate extraction process by modelling an
accurate bare earth surface that becomes the backbone of downstream processes. These

methods includeifters such as:

Iterative linear least squares interpolatiorr which removes a lowdegree polynomial trend
surface from the original elevation data to produce a set of reduced elevation vadfiess,
firstly a rough approximation of theerrain surfaces created then ggn of the residualchecked

which saysiegativevaluesare terrainand the process igerated (Liu 2008)

Comparative local curvature filteg used to filter tree points by comparing localreatures of
point measurementswhich wasdeveloped by(Haugerud and Harding001)and anaysed in

(Zhanget al.2003)

Adaptive TIN modek usedto find ground points in urban areasirstly, seed ground points
within a userdefined grid of a size greater than the largest rgmound features are selected to
compose an initial ground dataset. Then, one point above each TIN facet is added to the ground
dataset every iteration if its paraaters are below threshold values. The @don continues

until no points can be added to the ground datagdbwever, he problem with the adaptive

TIN method is that different thresholds have to be givier various land cover types. This

method wasproposed by Axelssomand analysed b{Zhanget al. 2003)

Slope based filtec identifies ground data by comparing slopes betweebhlRARpoint and its
neighbours. A point is clafed as a ground measurement if the maximum value of slopes
between this point and any other point within a given circle is less than a predefined threshold.
The lower the threshold slope, the more objects will feenoved. The threshold slope for a

certan area is either constant or a function of distance. A reasonable threshold slope can be
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obtained by using prior knowledge about terrain in the study afBais methodvorks well in
flat urban areas, but has erromhen applied to vegetated or variable p areas It assumes
that the gradient of the natural slope of the terrain is distinctly different from +emain

objects This method waproposed by Vosselmamnd analysed bgZhanget al.2003)
000 AN I ANODQ Q YQ Qnhy  (Vosselman 2000)

(Vosselman 200Q)roposed threeways to derive filter kernels based on knowledge about the

height differencesn the terrain(filters 2 and 3 make use of training data)set
1. Synthetic Functiog based on terrain shape and precision of height measurements:
Yo Q mQ p® W,

Where 0.3 is for 30% terrain slope (different for different slope), and the second term is to

allow that 5% of the terrain points with a standard deviatjomay be rejected

2. Preserving important terrain features derive the terrain shapecharacteristics from a
training sample consisting only of ground points such that the points in this area can be used to
empirically derive the maximum height differences as a function of the distance between two
points ¢ this filter assists to maintain imortant terrain features but may also eept points that

are nonground:

fnm (Ah:} :M =N F(QI;:}N_I Ve F{_\_h)

Jd Ah o Ah

= NF(ARY T i AR)

3. Minimising classification errorgs minimising errors by omissioor commission for ground
points. If the height of a ground point at a given distanise known, determine height
differences between other points using probabilities derived from frequency counts of height
differences between point pairs in a training data set of ground poarid between point pairs

from the training set of ground points and ah point from the set of unfiltered dataThese
values of height differences can be taken as the maximum height differences that are allowed

in the filtered data in order to minimise thmumber of classification errors:
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P(p, e DEM.Ah.d.p € DEM)

P(Ah.n’.pj e DEM)
_ P(&h|d.p, e DEM.p, € DEM) P(p, < DEM|d.p, « DEM)
P(Ah| cf.pJ. e DEM)

P(p, e DEM|Ah.d.p;, € DEM) =

Mathematical morphological filterare atype of slope based filter mainlysed for bareearth
extraction.Lidarimages are converted to regular, greyscale, grid image in terms of elevation,
while shapes of elevated buildings, cars etc. can be identified by change in greyatwhe,
algebrac set operations argerformed to identify objects(Zhanget al. 2003) The main
objective is to classifyidar data into two classespamely ground and noeground points
(Vosselman 2000; Aktaruzzaman and Schmitt 20G0pund data is used f@TM generation
while nonground data is used for object detection and subsequent classificaitrer results

by various authors are as followkarge height dierence is unlikely to be caused bteep slope

in terrain (Vosselman 2000; Baligi al. 2008) process of finding local minima and identifying
terrain points from coarse to finer grigHu, Y. 2003establishing the topological and geometric
relations between barearth and surface objects, identifying surfaces whose perimeter is

raised above th@eighbourhoodSithde and Vosselman 2003a)

Spectral Information IntegrationMapping spectral value from image pixelltaarpoint data

mostly used for misclassifigpoints betweerbuildings and trees.
Calculate olourindex Cl=green/ (red+green+blue)

where the ndex classifi¢ values are as: buildings 635 < trees(Aktaruzzaman and
Schmitt 2010)

A brief look at the literature was also made with a view to identify errdclDARJata and its
classification and for methods used to detect these err@smmission errowhich results in
classification of nofground points as ground measuremen{¥osselman 2000; Zhareg al.
2003) Omission errog, removes ground points mistaken{Zhanget al. 2003) and Systematic

error which is visible when there amfferences in height whenambining data from adjacent
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strips (Vosselman 200(gnd can beeliminated by modelling the errors ahperforming a strip

adjustment.

Methods of erpor detectioninclude WaveletDe-Noisingto assist in evaluating the response of
filters (Balighet al. 2008) Ground truth Derived filter functionso check against other filter
results(Vosselman 2000and Manual compari®n to evaluate filter performance against that

performed with manual filtering(Sithole and Vosselman 2003b)

In a report submittel to ISPR{Sithole and Vosselman 2003bpke a comparative assessment
of different filters. A comparison of opesource Lidar filtering algorithms in a forest
environment is made byMontealegreet al. 2015) An extensive review of filtering methods
and algorithms and overview @iDARpoint cloud processing software is abundant in literature
(Tao and Hu 2001; Zhang awthitman 2005; Fernandezt al. 2007; Baligtet al. 2008; Meng,
Currit, and Zha@010)

Issues with computational efficiency are documented $ghole and Vosselman @8a) a brief
study on thelLidar data capture accuracys discussed byMontealege et al. 2015) who

generallystipulates this to be0.15min vertical and 1m horizontal.

New filters and algathms for classification have been developed by several autfi@isle2-1

shows a list of methods and the authors who developed them that were researched for this

project.
Table2-1: New Filters or algorithms developed in these papers
Developed by Method
(Zhanget al.2003) Progressive  morphological filter for removing Rground

measurements from airbornelDARJata

(Brunn and Weidner 1998) Hierarchical Bayesian nets for building extraction using dense DSN

(Charaniyaet al.2004) Supervised parametric classification of ALS

(Chen, Cet al.2017) Fast and robushterpolation filter for ALS point clouds
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(Chen, Qet al.2007)

Filtering ALS data with morphological methods

(SilvanrCardends and Wan
2006)

Multi-resolution approactfor filtering Lidaraltimetry data

(Vosselman 2000)

Slope based filtering of lasaltimetry data

(Wang, Oet al.2006)

Bayesian approach to building footprint extraction from ALS

(Aktaruzzaman and Schmi
2010)

Automatic object detection to support urban flooding simulation

(Elmgvis et al

(EImqvist 2002)

2001)

Active comours ¢ applied to Lidar data the active shape modg
behaves like a membrane floating from underneath the data pointg

(Sohn, G and Dowman 2002)

Regularisation method TIN progressively densified and points on ]
are bareearth while the rest are objects

(Roggero 2001)

Modified slope based filterq variant of the morphological filte
developed by Vosselman

(Broveli et al.2002)

Spline interpolation¢ made of five steps, Pqprocessing; Edg
detection; Region growing; Correction; and DTM computation

(Wack and Wimmer 2002)

Hierarchical modified block minimumg algorithm where DEMs @
progressively lower resolutions are created

(Axelsson 1999, 2000)

Progressive TIN densificati@na sparse to dense TIN is derivednfr
Lidarpoints baed on threshold values

(Sithole and Vosselman 2001

Modified slope based filteg variant of morphological filter develope
by Vosselman, works by pushing up vertically a structuring elemel
the shape of an inverted bowl) from underneath a point cloud

(Pfeifer et al. 1999; Pfeiferet
al. 2001) (Kraus and Pfeife
1998, 2001) (Briese and
Pfeifer 2001)

Hierarchical robust interpolation a rough approximation of the
terrain is first computed. The vertical distanoé the points to this
approximate surface is then used in a weight function to as
weights to all points. Points above the surface are given a small w
and those below the surface are given a large weight. In this way
recomputed surface is aticted to the low points.
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An extensive review of literature was made to assess unique applicatidriBARilters with a
view to implement and/or improve techniques to be sued for this project. These unique
application includeAutomatic object detectionAktaruzzaman and Schmitt 201@utomatic
structure detection in a point cloud of an urban landscgf#hole and Vosselman 2003a)
Segmentation of unstructured point clougBassieret al. 2017) Lidardata classification using
extinction profiles and composite kern@hamisi and Hoéfle 201, 7)ensor modelling based ALS
data classificatior(Li et al. 2016) and Houghtransform and other algorithms for automatic
detection of 3D building roof planes frobidar(TarshaKurdiet al.2007)

A review of the literature was made to understand current level of accuracy, performance and
costassociated with the feature extraction process. This would enable an adequate comparison
to be made with the software development as part of this project and provide as key input in
aligning with the accuracy required for this proje@lood 2004}iscusses oASPRS guidelines

for vertical accuracy reporting dfidardata. Effect ofLidardata density on DEM accuracy
detailed by(Liuet al. 2007) (Stokeret al. 2016)discuss ®aluation of single photon and Geiger
mode Lidarfor 3D elevation programLinearLidarversus Geigemode Lidar- impact on data
properties and data qualitipy (Ullrich and Pfennigbauer 2016)ovided a background material
should the findings from this project be expaad to include future statevide capture using
Geiger Modelidar methods.Modelling vertical error irLidarderived DEMhas been dealt by
(Aguilaret al.2010)

Methods to assss the performance of &idaralgaithm were available in literatureThese
include:
1 Global and local contexg spatial coverage possible, larger the bet{&ithole anl
Vosselman 2003a)

1 Computational efficiencyg Time taken to perform filterindSithole and Vosselman
2003a)

1 Data structureg in (Sithole and Vosselman 2003ahgle data structure represented
by the profiles and line segments usexnt both segmentation and classifications with
no fall back on other data structures nor other supipdata derived, assists to speed
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up the algorithm; in(Sithole and Vosselman 2003Ispme filters work on raw point
clouds while some work on resampled image grid;

Verticality ¢ ability to handle surfaces lying verticallpave each othe(Sithole and
Vosselman 2003a)

Adaptability¢ for sdving different detection taskéSithole and Vosselman 2003a)

Point density¢ evaluation of filter performance based ohidar point density
(Vosselman 2000)

Lidardata noiseg accounting foiLidardata noise and final data precisig¥iosselman
2000)

Type | vs. Type Il Errar€rrors in Commission @mission(Sithole and Vosselman
2003b)

Performance in Steep Slope®ifferent performance criteria to flat terrai{Sithole
and Vosselman 2003b)

Working around special features (such as pes)c (Sithole and Vosselman 2003b)
Assessment of outliers (Sithole and Vosselman 2003b)

Performance on areas with vegetation on sloge€Sithole and Vogdman 2003b)
Effect ofLidarresolution¢ (Sithole and Vosselman 28i0)

Test neighbourhood; Filters operate on a local neighbourhood; Algorithms can
perform three kinds otomparison Pointto-point (compare known pointd classify
unknown point);Point to Point§compare known point to classify unknown points);
Pointsto-points (compare known points to unknown pointéJithole and Vosselman
2003b)

Measure of discontinuity dmost algorithns classify based on some measure of
discontinuity. Some of the measures of discontinuity used are, height difference,
slope, shortest distance to TINwcets, and shortest distance to parameterised
surfaces (Sithole and Vosséman 2003b)

Filter concept; devery filter makes an assumption about the structure of Bare Earth
points in a local neighbourhood. This forms the ephof the filtee Blopebasedc
slope or height difference between points measured and classified basea
threshold; BlockMinimum ¢ Horizontal plane with specified buffer zone to classify
points in or out of buffer;Surfacebased¢ parametric surfacewith corresponding
buffer zone to identify barearth points; Clustering / Segmentatiow if points
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cluger above its neighbourhood then it must belong to an obj¢Sithole and
Vosselman 2003b)

1 Single vs. lIterative procesg ¢ Recursive vs norecursive with advantages in
computational speed for single pass versus accuracmultiple pasg(Sithole and
Vosselman 2003b)

1 Replacement vs. Cullimg(Sithole and Vogtman 2003b)

1 Use of first pulse and reflectance dagaSithole and Veselman 2003b)

Thereare multiple papers that were explored to find methods of utilising a fusioniaddrand
Imagery.Table2-2 shows some studies that have utilised an imagery kidarfusion feature

extraction method.

Table2-2: Studies with feature extraction using Image amgarfusion method

Developed by Method
(Cheng and Weng 2017) Urban road extraction from combined higbs sat image and ALS
(Duet al.2016) Building change detection using old aerial images andlridardata
(Gerke and Xiao 2014) Fusion of ALS point clouds and images for supervised

unsupervised scene classification

(Hermosilleet al.2011) Evaluation of automatic building detection approaches combir
high resolution images arlddardata

(Hu, Xet al.2004) Automatic road e&traction from dense urban area by integratg
processing of higihes imagery andlidar

(Kim and Medioni 2011) Urban scee understanding from aerial and grouhdlar

(Meng, CurritwWang et al.2010) | Objectoriented residential building landse mapping usind-idar
and aerial imagery

(Peng and Zhang 2016) Building change detectiocombining.idarand ortho image

(Rottersteineret al.2003) Detecting buildings and roof segments by combiningar and
multispectral images
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(Schenk and Csathd 2002)

Fusion ofLidar and aerial imagery for a more complete surfg
description

(Sohn, Gunho and Dowmg
2007)

Data fusion of highies satellite imagery andlidar for automatic
building extraction

(Wang, H. and Glennie 2015)

Fusion of waveforniidarand hyperspectral imagg for land cover
classification

(Wang, L. and Neumann 2009)

Automatic registration of aerial images with textured aerialLidar
data

(Zhou and Zhou 2014)

Seamless fusion afidarand aerial imagery for building extraction

(Robinsm et al.2014)

Multi-scale smoothed, 90m digitalevation model from fused ASTE
and SRTM data

(Huanget al.2011)

Information fusion of aerial images andDARdata in urban areas
vectorstacking, reclassification and pogtrocessing approaches
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3 Study Area and Data Acquisition

3.1 Background

Lidar and Imagery of variai resolutions were acquired at selected test sites. This section

discusses the rationale behind the selection of those test sites and the data acquired.

Two sites with rural and urban characteristics were selected to ensure thati¢iveloped
fenceline detection algorithm was able to detect fences for different kinds of kupltareas. It
was assumed that the terrain and fenliees in the two selected areas would serve as

representative site for most other areas in Australia or Neaaland.

3.2 Terrain chaacteristics

Natural and marmade features such as vegetation, powes, open spaces, road structures
and other mamrmade features are present in both the suburban and rural areas. The two
selected sites have differing elevation ciges in the terrain, @d the fencelines have their own
characteristic differences. In both the areas, fences with different construction materials such
as wooden, metal colodoond and chairwire fences are present. Fences are wholly or partially
visible, and fences have hedgerunning alongside them, which has led to algorithms

misidentifying the fencdines.

The purpose of looking into variations in the study area is to train the future fence detection
algorithms to work as efficiently in multiple envinmental conditions. Wite designing data
capture strategy for this project it was considered appropriate to design strategies that best

suited the upgrade requirement by extracting fedages in both rural and urban areas.
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3.3 Study area

Two representative rural and urban studyeas were identified for the workflow development.
Morayfield in the north of Brisbane was identified as a representative test area in auskan
environment, while Toowoomba in the west of Brisbane was seleated representative area

for a rural tes site.

3.3.1 Semturban test area: Morayfield

This area is representative of a semban environment with relatively smaller property sizes
with distinct fencelines. An outline of the test areas is showrFigure3-1 (a) and (b) vth the

location of the study area and an image taken over the study area.

Figure3-1: (a) Extent othe Project area in Morayfield, and (b) Areal image of the Project area

3.3.2 Rural test area: Toowoomba

A %cond pilot area, representative of rural property is in the outskirts of Toowoomba, a city
west of Brisbane. The area consists of relatively largepgnty sizes with different type of

fences (usually posts connected by metal fences) compared to the yflelch test site. An
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outline of the test areas is shown kigure3-2 (a) and (b) shows the location of the study area

and an image taken over the study area.
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Figure3-2: (a) Extat of the Project area, (b)réal image of the Project area

3.4 Existing Data

Lidarand Imagery data was available over the Toowoomba pilot area from the archive held by
DNRME. Free test data was made available by RPS Australia of 24ppsm including stexeo imag
for the initial development bthe processing workflow while waiting for the data acquisition

over Morayfield.

The project initially used the following data for workflow development, however since one of
the objectives of the project was to evaluate fae¢ extraction at various resations, it was
decided to acquird.idarand Imagery over Morayfield (see Secti8r) to ensure that data

captured at the same flight over the same area was utilised for evaluation:
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Morayfield initial data:

Aerial Lidar. There were 8 tiles ofIDARpoint cloud provided witha point densiy per tile that
varies between Bppsm. Fusing of point cloud data frorr_Blartiles thus yielded a combined

point density of approximately 24ppsm.

Aerial Phota There are 72 RGB aerial images with a GSD of 8cm. The photos have adequate
overlap for bundle block adjustment and have the required interior and exterior orientation

parameters.

Toowoomba:

Aerial Lidar. The Lidar point cloud consists of a single ti@vering approximately 30 sg.km

(5km X 6km area) where the average point denisigpproximately Bppsm.

Aerial Photo: An orthophoto at 10cm GSD available for the area was clipped to match the

extent of theLIDARIle.

Adelaide, South Australia:

Aerial Lidar. The Lidar point cloud consists of multiple square tiles over the CBD of Adelaide

with an approximate point cloud density of 20ppsm.

Aerial Photo: An orthoimage probably captured simultaneously with thedar data was

provided to the project alongith the digitalcadastre and control point vector shapefiles.

Geiger Modelidar, USA:

Aerial Lidar. A Geiger Modd.idarpoint cloud over USA was made available for a small area

with an approximate point cloud density of 32ppsm.

Aerial Photo:A small imgery file of lowresolution that marked the area of interest in graphics

was provided, however as this was of a very low resolution, this was not used.
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3.5 Data acquisition

Additional highdensity airbornelLidar data using Trimble AX60i sensor (Appentix3 was
captured over the Morayfield area. The combined point density for the multiple flight lines

resulted in most areas with a density of 50 to 100 points per square metre.

Multiple overlapping flightlines were flown to achieva higher density combined point cloud.
Aerial imagery was simultaneously captured using AICP65 Pro camera with 6cm GSD that

resulted in overlapping stereo imagery used for orieatification.

(Figure3-3 Left) shows the photeentres of imagery data capture anéigure3-3 Right) shows

the flight lines.There are 34 flight lines in total, 17 each in the nesthuth and eastvest

direction. A total of 68.idarscenes were captured while the total numbarimagery captured
was 1156.

Figure3-3: (Left) Photo centre over Morayfield for aerial imagery data capture, (Right) Flight lines for
Lidarand Imagery data capture
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3.6 GPS Field survey

After the Lidarand Imagery data capture, GPS field sunkeguyre3-4) was done to verify the
accuracy of thelidar data and for ortherectification of stereo imagery. Five locations that
could be identifiedn the imagery wereedected. These selected locations were flat planes of
around 1n? to enable Lidar data validation as per ASPRS Guidelines for vertical accuracy
reporting forLidarData(Flood 2004)In addition three prmanent marks werselected to tie it

to the national datum and the CORS network of Caboolture used for initial data processing. The

final data processing was done using AUSPOS soliliadhe(-1).

Figure3-4. GPS Field Survey locations
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Table3-1: Extract from AUSPOS Solution for GPS Field Slalaeyations

Station East North Zone Ellipsoidal Derived AHD
(m) (m) Height (m) (m)
0643 494144 .660 7000577.050 56 53.779 10.861
0753 494764.765 7001017.771 56 £9.348 16.431
5154 494900.611 7000646.300 56 58.029 15.122
TGT1 494903.245 7000645.653 56 58.100 15.193
TGT2 494228.762 7001027.850 56 51.817 8.891
TGT3 494604.607 7001323.800 56 51.500 8.575
TGT4 494766.851 7000993.469 56 59.753 16.836
TGTS 494142 .412 7000575.016 56 63.772 10.854
MGA Grid, GRS80 Ellipsoid, GDA94
Reference Stations used for the AUSPOS solution
Datae User Stations Reference Stations Orbit Type
2018/05/31 01:18:30 0643 0763 5154 TCT1 | ALIC BDST CELT CEDU CLEV IGS final

TGTZ TGT3 TGT4 TCETE

GATT HOB2 IPSR MOES ROEI
SYDN TID1 TOOG TOOW TOW2
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3.7 ImageOrtho-rectification

Image ortherectification was done for captured data in Morayfield in a software called Icaros
One Button using camera parameters shown in (Appet@if) and phob centre coordinates

from on-board navigation systems.

The Imagery was captured at 6cm GSD and had multiple overlaps from bothsoaoith and
eastwest flight directionsigure3-5 Top). The ortheaectified image using the supplied pheto
centre coordinates shwed that there was a systematic shdt 1.2m(Figure3-5 Middle) in al
the images with respect to data captured biglarsystems. As bothidarand Imagery had been
captured at the same time from the same plane using the sagference CORS station, the

shift could be attributed to the accuracy attained by the GNSS systethd camera.

The images were orthoectified again using coordinates obtained from the GPS field survey
and DEM fromLidar, and the result of the ortheedification showed good match with lines

obtained fromLidar(Figure3-5 Bottom).

e
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Y
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Figure3-5: Image capture and processing (Top) Aerial photo of 6cm GSD; (Middle) Systeifhatic sh
noticed during ortherectification; (Bottom) Ortherectified imagery using GPS ground control
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Discussion The initial ortherectification demonstrated that there is a potential farror
through systematic shiftduring ortho-rectification which can lad to incorrect positioning of
cadastral data. It is not certain whether it is quite common for ortieatified imagery supplied
to the department to have these systematic errors or whether they have been gdtiified

using ground control and errors nimised.

Therefore, it is recommated that imagery should be ortheectified using GPS field survey
coordinates and highiesolution DEMpreferably obtained fronlidarto improve the results of
feature extraction or data validation as demonstdtby the impoved result ofline-fit based

on the new orthorectification.
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4 Methodology

4.1 Background

This section addresses objective one of this resedilayjh densityLidardata complemented by
high-resolution imagerywas used in the development ofin independent aswell as an
integrated workflowfor extraction of fencdines to be used for DCDB bleafjustment The

data for the project were sourced from multiple sources including conducting a flight for data

acquisition for higkresolution latest ata.

The projectdraws2y SEA&GAY3 SELISNIAAS FyR LI &d NBa
OEGNI Ol A2¥ €2 tMPNANBFAAGAYT NBaSINOKEZ FyR 9
expertise.Thisexisting body of knowledge was adapted to apply artted these capabties

to optimally address the needs of the project.

The specific requirements of this projeatasto extract fencdines which arenarrow linear
features at a given elevation rangand have a range of characteristié&mprical assessent of
the different data sources in various combinatiom&s undertaken based on both cadtral

data and ground truth information

Various candidate 2D and 3D feature extraction tools were selected and evaluated before
finalising an independent workflow fdridardata plus an integrated workflow for imagery and
Lidardata which extracted fencknes to be used form block adjustment digital cadastral

data.

The evaluation of the data, the workflow, and the feasibility of utilising the results for cadastral
upgrade includd the determination of geepositional biases between the digital cadastre and

land parcel boundary segments extradtvia the feature extraction approadbr fencelines.
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4.2 Research Steps

4.2.1 Project setup, Literature Review and Planning

A omprehensive literture review of research intbeature extraction fromLidarand Imagery
was undertaken. It also included existing worlupgrading the cadastre via imagery anidar,

from aerial & spacéorne platforms

This review of research revealed that while thene aumerous existing #ure extraction
methodologies andpplications that have been used to delineate linear features, yet there are
no research that have focussed on extracting the feliroes with a view to move the graphical
representation of the digal cadastral boundaries with gguosition inaccuracies tthe ground

positions accepted by landowners.

Further, the existing research revealed thahile there have been capabilities to extract a
power-line, there have been no research to explore the ddmlity of extracting a narrow
feature such as a fence @h may be built using various construction methods, have various
heights above the groundhften have hedges running along #and are often obscured by

existingtreesand manmade structures.

4.2.2 Acculacy requirements for Queensland cadastre

An investigation into theexisting accuracy of Queensland cadastre, dbheuracy requirements
associated with cadastral upgradingnd that achievable through the adopted methodology

was undertaken.

The starting pot for exploring the workflow was throug highresolution Lidar data. After
multiple algorithms and workflows and been explorede adopted workflow was tested for
different resolutions ofLidar data and an integrated.idar plus Imagery workflow. igh
resolution Lidardata andimagerywere acqured of appropriate resolution and gepositional
accuracy. Highesolution Lidar data has demonstrated a capacity to iddntiinear features
such as powelines Thus, itwas expectedthat a similar resolutionLidar would assist in

identifying fencelines, and highresolution imagery can be used as a complement to produce
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an integrated boundary detection tooHowever, it is noted thathis detected boundaryines

may or may not coincide with a property boundary.

4.2.3 Sudy area identification

Identificaton of the pilot project areaand associated data sourcegere done carefullyioting
the requirement to include both urban and namban environments and the desirability of

having accesto multiple sources of data

Also, at least one of the areas needed be in a location where it would be feasible to acquire
suitable imagery andlLidar data while maintaining the selected terrain characteristic®ting
that resolution requirements and accuracy tolerances in rurahaneeed not be as stringent as

those incities and towns.

4.2.4 Manual feature etraction and accuracy analysis

An initial manual feature extraction and upgrading exereise performed, the aim of which
were:
I. To validate the overall upgrading workflow envisagied the semi and fully
automaticmethod being developed and tested;

ii. To assess the metriperformance of thevariousdata sources and verify that the
accuracy ofthe feature extraction could be comparable to a relagly spatially
accurate cadastre;

iii. To assess the feasibility of block adjugfi a distorted cadastre intds expected
spatial location using the extracted fentiees and derive metrics of evaluation of
accuracy;

iv. To provide the benchmark or control data against which the sesnd fully
automaticmethods wereevaluated.
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4.2.5 Evaluation of alternative methods

Several different methods of feature extraction froodar, Imagery and Integrated methods
were explored. The results were evaluated and some of the methods were discarded while

parts of sone of the methods were used fohe final processing workflow that was adopted.

4.2.6 Processing pipetie and software development plan

This phasénvolvedidentification of the series of manual steps ttie development of software
to support the automated extretion of cadastreelevant featues from the imagery andidar
data, with appropriate analytical functions to quantify g@ositioning discrepancies with
respect b the existing digital cadastral dat&everal methods were explored and finally a
workflow for Lidarand another forintegrated Lidarplus Imagery was finalised with an overall

workflow shown inFigure4-1, anddetailed processes shown kigure4-14 and Figure4-15.

LidarData Processing |l Data Classificatiol—p Fencelipe | Quality Assessmel
Parameters Extraction

(Lida

Processing ; Fenceline : :
Edge Detection Filter Lines
/ Ortho /_’ Parameters [ — ° |_' Extraction |

v

Relative (Imagery+ Lida Quality
DEM Assessment

Figured-1: Processing overview for (Tdpjlardata and (Bottom) Integrated Imagery ahédlardata
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4.2.7 Automated feature extraction and data analysis

A workflow/processing pip&he to support the application ofthe adopted (semi/fully
automated feature extraction toolfor the extraction of fencelines was developed and

packaged in a graphical user interface (GUI)

The new software developed to support the automated feature &stipbn/upgrading stage
included an independent process for feature extraction fraidarand an integated feature

extraction method fronLidarand Imagery.

The output of the feature extraction procesgrimarily compriseof linear features forming
initially non-concatenated boundary segmentspresented byfenceswhich can be used as is or
cleaned to extnd to the intersetions from which cadastrallines or polygons can bélock
adjusted The extracted line features atben be compared to the current cad@al database
to ascertain the spatial accuracy of tlextraction as well as the cadastre and to qtity

corrections,mostly geepositional biaseswhich need to be applied to the cadastral data.

4.2.8 Evaluation of feature extraction

An experimental evaluatio of the semi and fully automatic feature extraction and cadastral
upgrading methodologwas undertaken for thelevelopedworkflow over a range of different

sites, from urbarareas through to rural properties.

The purpose here iso fully assess the del@mped workflow in terms of its practicability,
accuracy, completenesand general reliabilityas a means of automated upgradimg the

cadastre to the regired levels of accuracy

4.2.9 Reporting and recommendations:
This document is ppared to report on the atcomes of the research. This addresses:

i.  Achievable accuracy from available data sources used in isolation and in
combination;

ii. Recommended software tools and capabilities;
iii.  Technical challenges and limitations of the approaches used.
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The report also makesecommendations on future work and options for operational

implementation.

4.3 Methods of Feature Extraction Explored

4.3.1 Overview of Methods Explored

Several methods were explored for ways to extract felwes, either fromLidar, or Imagry or
combined. The proessing methods on their own had some things that worked and some things
that did not, so the learnings from what worked and what did not was used to develop a
processing workflow that was further used twreate a GUI forLidar processing and an
Integrated Lidarand Image processing workflow. Tharious processes explored are listed in
Figure4-2 below and further details about the processes are discussed in SectiBtisto

4.3.8

Powerline Algorithm le.ar Surface kel Direct Height Filter
Difference Imagery
Image Edge Detectid ImagePoint Cloud ImageSegmentation

s L

What works? What does not work

e

Develop Algorithm
based on Learnings

Figure4-2: Various processes explored for fetine extraction
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4.3.2 Method using Poweiline Extraction Parameters

Powerlines vectors can be identified to be an entity closest to felirees in terms of narrow
elongated features with specific height attributes. The key difference is that power lines are
much taller than a typical fence line andrcbe extracted as a continuous linear feature with

clear return numbers ihidardata capture.

There are usually very little differences in construction material for pdimess compared to
fences, hardly any confusing vegetation running alongsideiit asdges running along fences,
and geometrically, fencne vectors are relatively shorter iength and often connected at

right angle to each other or incomplete at the front of the houses.

Classification (DEI‘I | Powerline and
DSM, Buildings,| Fence in
Trees) Unclassified

! Filter for Height 0.4={ Run Powerline | Export Vector ang
to 2.0m Algorithm Quality Assessme|

Figure4-3: Workflow for Powerline Extraction Algorithm

The frst step in the extraction processgas toextract all the typical features in the scene except
for powerlines and leave rest of the points as unclassified that could potentially represent fence
lines (Figure4-3). The next step was to filter out anynclassifiedpoint cloud above or below
2.0m to 0.5mrespectivelyas this is the likelyange ofheight above groundor fences.A
powerline extraction algorithm was run in ENVI and the results exported to vector files for

guality assessment.

The algorithm does a decent job identifying fencelines in the raster version, but it also has a
large number of omissions in its fentiees detectionand missing lines in the vector format
(Figure4-4 and Figure4-5). It also identiies a number of other features at the same elevation
range (false positives), and since the powerline algorithm is a -blaxkin the ENVI

environment, it is limited to be used in an ENVI environment. Therefore, parts of the process
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wasused for the finalvorkflow which was developed in an open source IDL as well as an ENVI

IDL version.

Figure4-5: Fences detected using powerline algorithm showing false positives and omissions
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4.3.3 LidarSurface Differencélethod

Digital Surface Model (DSM) represents the elevation of features on thacgudlong with
elevationof the ground, while Digital Elevation Model (DEM) represents the elevation of the

ground in the scene.

The fencdines extracted from various methods have false positives along the ground such as
kerb lines and other low lying #ures.One option to getid of thesefalse positive is to use
remove the ground level information from the elevation modédils involvessubtracting DEM

from DSM to create a model that hold just the surface elevation informatibere each pixel
represents the elevatiomf the underlying pixe{Figure4-6). This can then be filtered according

to the range of fence heights and exported.

The problem with such an approach was due to software limitations where DEM and DSM were
extracted at diffeent pixd resolutions resulting in loss of information due to varying resolution.
Additional steps were also required to bring them to the same resolution and there were
difficulties in additional filtering for features other than fences. It was alsocdiffito cluster

the point cloud to a single fendae vector and to ensure that fences were selected and no
other ancillary objects such as hedges. This process however had its merits with the surface

difference model and this idea was implemented in fimal workflow.

Figure4-6: Surface difference from DSMEM derived frorhidar
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4.3.4 LidarSurface Difference on Imagery Output

Edges detected from image based feature extraction could be ussahbination with surface
difference model to improve the results of the extraction by removing noise. There is a marked
improvement in the result as many false positives on the ground and within the building
envelope are now eliminated as relatively acderabject heights can besed to eliminate

ground features such as roadside kerlssg(re4-7). Parts of this method was used in the

integrated image andlidarbased nethod developed as a GUI.

Figure4-7: (Left)Lidarsurface difference model, and (Right) Extracted fdimes on imagery

4.3.5 LastoolsDirect Height FilteMMethod

Appendix10.5 describes the approach used to filter out feHa®e raster(Figure4-8) using
methods described in individual tools in Lastools documentation. These processes provide good
results in raster and is necessary for developing part of the input raster for use in the Open

Source IDL GUI developed for the project.
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Figure4-8: Fencdine raster filtered using Lastools

4.3.6 Image Edgéetection Method

Various options for edge detection from imagery are availabigure4-9 shows the result of
edgedetection operation ona single band of the RGB imagelarge number of features, trees
and nost of the linear features are extracted from the imadgéhere aresomefalse positives
that can be removed by superimposing either the building raster or buildiotpfimts (Figure
4-9 Bottom). One disadvantage of this method is incatency of results based on image

characteristics, capture of shadows, and displacement of féines due to look angle.

Parts of this method was used to develdpe integrated Imagery and.idar fenceline

extraction method in the GUI.
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Figure4-9: (Top) Edge detection shows a large number of edges; and (Bottom) Buildings overlaid on the
edges
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4.3.7 Imagederived Point-Cloud Filter Method

Dense point clouds cabe generated using ingee matching methodsising photogrammetric
methods b take advantage of forward and sideverlap in images and known acquisition

geometry(Figure4-10).

One important reason for investiging this aspecin this researchs it explore whether itwill
help to substitute and/or supplement aeriaidarderived point cloud in areas where no such
capture is availableAn initial assessment was made to jedthe suitabiliy of utilising

photogrammetric point cloud derived fromeaal images.

Figure4-10: Dense point clougenerated from stere@air images by image matching

Figure4-11 shows the rsults of feature extraction of feneknes using point clouds based on
aerial imagery. Initial assessment of the resulting feliwe shows many false positives and far
more omisfons. For imagdéased point clouds, viewing geometry can cause difficuliynage
matching. Furthermore, shadows often associated with the fdimes and a lack of contrast
with the immediate background cause issues with this extraction method. It was th
concluded to not explore this any further, and that while using imagemggebased feature
extraction may be better suited than derived poitibuds for feature extraction.
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Figure4-11: Feature extraction from aerial image derived point cloud

4.3.8 Image Segmentation Method

Image sgmentation was explored in ENVI software using an ordutified imagery.Object
based Image analysis (OBphdvided benefits sut as additional segmentation parametds

image analysisuch as texturgspectraland spatial attributes.

The spectral bightness of the fencdines the spatial propertiessuch asarea, elongation and
length of the featuresandthe texture of the imagewere used to extract the feneknes(Figure
4-12). The results varied between different areasda different parameters had to be
determined for different areas based on several iterations of what worked for that image and
area. The resultip fenceline extraction had false positives and omissioRsgire 4-13).

Therefore, his method was not explored any further.
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T3 Peaten LYVOIBGE « NSE Gaked

Rule-based Classification
Create m‘

Figure4-13: Fencdine extactedusingimage segmentation with false positives and omissions
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4.4 Considerations foFencesand Corresponding Algorithms

From exploration of the various methods for feature extraction, it was determined to use parts
of the methods that worked. It washtis necessary to define the fence characteristics that
would be necessary to be considered for further development of anriéthgo. This section

discusses the characteristics of fences and how these characteristics are considered in the

algorithm(Table4-1).

Table4-1: Fencdine characteristics and algorithm considerations

Fenceline characteristics

Algorithm consideration

a. Fences are long and relatively thin features

b. Fences my have gaps in data due toherent
gaps (gates etc.), visibility gaps (fence blocke(
vegetation, buildings or sheds)

1. Use an elongation ratio (length/width) thresho

2. Select minimum length tolerance to eliming
segmented and spurious lines

3. Ug a maximum gap toleranceaalg identified
fencelines for line fitting

3. Eliminate larger areas in the processing that
not a result of(large length value Xsmall width
valug

a. Fences have hedges growing next to them;

b. Fences can be made of hedg

1. Use theRANSAC algorithm to select the m
probable line with a maximum cluster distan
threshold

2. Utilise vegetation removal kernel radi
threshold in 2D beyond which points are n
considered

3. lterate to test if points eliminated previolyscan
be includel between the segments

a. Fences generally have elevation
between 0.5m to 2.0m

rang

b. Fencelines may be confused with other line;
lines such as buildings, powerlines, road

c. Fences may have high vegetation covering

1. Eliminate lirs formed onbare earth, buildings
or high vegetation;

2. Use a filter thatselects point cloud betwee
0.5m-2.0m for the analysis

3. Identify and remove buildings, powerlines

4. |dentify and remove trees
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a. Fences are usually in cardinal directions lzut
be anydirection in between;

b. Fence joins are close to 90 degrees

1. Use directed convolution filters to identify edg
in cardinal and diagonal directions (imagery);

2. Calculate curvature to eliminate nastraight
lines

3. Eliminate joins with an ghe greate than a
specified threshold

There are different types of fences (e
continuous paling fences, hedges, post and V
fences etc.)

1. Different fences return different concentratig
of Lidar point clouds, so use different settings f
line gapsetc. in the .json files

a. In flat surfaces, fences usually have the sg
height throughout a single line

b. Cars etc. at a similar height range have a pl
surface

1. Use a zromponent ofplane fit over norma
vector, i.e. plane fit over original pdiolouds

2. Use a tolerance threshold to eliminate poir
outside a given-plane

3. For fences on sloping ground where thplane
changes rapidly, not use this component

The choice of filter/kernel and its parameters used to detect fitieceline featues canhave

varying degree of influence a the accuracy ofhe extraction. Afterexploring the relative

merits of the various aspecttie following factors were selectedhat formed the core of the

algorithm development:

=4 =4 4 4 A4 -4 A -4 -4 -2

Maximum height above terrain tlmok for fence points

Minimum height above terrain to look for fence points

Minimum number of points in a cluster to be considered to be part of a fence
Distance between pois tofit linear features

Maximumgap along fence to fit lines

Minimum length offenceline segments

Kernel radius to remove vegetation near fedoees and its threshold

Exclusion of points as fentiees based on previous classification

Parameter for dding back a point if a line is subsequently detected

Distance threshold for poistfor fitting a plane (to extract fendaes)
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4.5 Workflow developed for Fencdine detection using.idar

A linear workflow was developed fdhe fenceline extraction. The philosophy behind the
development of this workflow was to makeassemifully ¢ automated as possible analso to
provide usersvariousoptions to choose algorithms and parameters that suithd available

Lidarpoint-clouddensty.

Three parameter files were developed based on the point cloud density of the available data:
Low/sparse dasity; Medium density; and igh density, that broadly reflectsreatlife data
capture scenarios. The workflow also caters for advanced usermthfy fenceline extraction

parameters as an iterative process improve the overall extraction results.

An inmportant consideration in the design of the workflowigure4-14) is to cater for varying
guality and geographic coverage of the data that is likely to be used in a jurisdiction. Thus,
variability in point densities was addresseg developing algorithmshat is parameterised
using a model that caters for three densities describedTable 4-2. The three different
parameter files are dependent on the density laflar points per square metre (ppsm) and

various other considerations (More details in Appentix6).

Table4-2: LidarDensity vs. parameters to be used

LidarDensity PPSM Range Terrain type JSON File to use
Low >4 ppsm Mostly Rural ParamSparseData.json
Medium 4¢ 20 ppsm Rural to Urban | ParamMediumDensityData.jsq
High < 20 ppsm Urban ParamHighDensityData.json
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Figure4-14: Workflow for Fencéine extraction usingiidar data



As thespatialextent of Lidarpoint-cloud coverage could be large, and to make allowances for
various computational geacities, the algorithm providean option to process these files by
splitting themasrectangular processing gridiefined by sersto cater for the size of the area

beingused for fence extraction.

The workflow is also designed to refine the result with a SVM basedeaefiing model that
allows users to guide the extraction process by training the model with user identifreelcto

versus incorrecteature extractionsto refine the final output
The ley steps in the workflow are described as follows:

a. Select thenput LAS file (or a collectiaof Las filey assess poiatensity which in turn

would allow in the selection of thparameters of extraction;
b. Split the LAdle into desired rectangular grlzesand select a processing AOI
c. Process théidarand extract fencdines

d. Review andefinethe vectors and the training model anditput the fenceline vectors

4.6 Workflow for Fene-line detection using Integrated Imagg andLidar

The approach taken consists of multiple steps in order to derive line segments from imagery
(Figure4-15).

Edge DetectionUsing the Canny edge detection algorithm, edges caaxtmcted efficiently
from imagery. The image was processed in tiles of 256x256 pixels at a time. The Canny
algorithmreturns many more edges than are desired to be included. Most notably, vegetation

and textured roofs returns high concentrations of edges

Clustering Clustering of adjacent (contiguous) pixels in the Canny edge detection output is
performed next to idetify and further process groups of pixels to see if they should be
included or excluded. Each contiguous group of pixels is then passedhea next step in the

algorithm.
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Figure4-15: Workflow for Fencdine extraction using @ho-imagery and.idarRelative Elevation
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