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1 Introduction 
 

Groundwater dependent vegetation (GDV) relies on a permanent and stable water 

table for a significant portion of their water requirements. Dewatering of mine pits to 

access ore can cause the water table to decline beyond their root systems, potentially 

resulting in mortality. Ground-based surveys of vegetation health are important in this 

process, and these can be assisted by earth observation (EO). Analysis ready 

datasets (ARD) of EO imagery can be used to map GDV at regular intervals to detect 

change and direct ground-based surveys to investigate potential areas of concern.   

Eucalyptus victrix, E. camaldulensis and Melaleuca argentea are three common tree 

species referred to as phreatophytes (or more generally ñGDV speciesò) in the Pilbara 

region of Western Australia. However, they generally have differing levels of reliance 

on groundwater. E. victrix is a facultative phreatophyte that utilises stored soil water 

reserves and may utilise groundwater to satisfy part of its water requirements. E. 

camaldulensis and M. argentea are both obligate phreatophytes, meaning access to 

groundwater is critical for survival. M. argentea have shallower root systems than both 

Eucalyptus spp. and so are usually the first to show water stress if groundwater depth 

increases. 

Healthy specimens of these GDV-species are perennially green with moist foliage 

relative to coexisting species (OôGrady et al., 2011; Barron et al., 2014). It is this 

characteristic of ñgreen persistenceò that can be capitalised on for detection and 

mapping from EO imagery. Earlier research by Trotter et al. (2020) using a knowledge 

driven spatial multicriteria approach has shown that the concept of green persistence 

could narrow the search space for GDV in the Pilbara bioregion of Western Australia. 

Their approach used just two EO images per year based on the premise that if 

vegetation was vigorous, green, and moist in the wet season and in the dry season 

then it was likely to be GDV. Other vegetation is likely to be less vigorous all year 

round (e.g., mulga) or very green in the wet season but senescent in the dry season 

(e.g., grass species).   

Given the discrimination potential provided by the green persistence approach, it is 

hypothesised that an entire annual stack of EO imagery could further discriminate 

GDV from coexisting non-GDV. Repeat observations through time are powerful for 

characterising and quantifying ever-changing processes such as phenological events 



(Reed et al. 2009). These include greening, senescence, flowering, leaf fall and leaf 

development. Phenological metrics (or phenometrics as used herein) are metrics that 

can be related back to many of these events in a plantôs life cycle. 

Much of the early (and still current) use of phenometrics were paddock-scale 

applications such as crop type mapping and productivity estimates (e.g., Sakamoto et 

al., 2013; Araya et al. 2015; and Brown et al., 2013). Kramer et al. (2000) used 

observations of later than usual commencement of seasonal green-up to provide 

greater insight into changing climatic patterns. Van Leeuwen et al. (2010) used 

productivity to discriminate between different vegetation communities.  

Most studies utilise the 250 m spatial resolution of MODIS prepared using 8 or 16-day 

maximum value composite (MVC) imagery to mitigate cloud cover thereby ensuring 

no bias from missed, poor quality, observations. The desirable features of higher 

resolution for phenology mapping (e.g. Melaas et al., 2013) has led some researchers 

to downscale MODIS imagery via fusion with lower frequency but higher spatial 

resolution Landsat and Sentinel imagery (e.g. Gao et al. 2017, Onojeghuo et al. 2018; 

Schreier et al, 2021). However, ideally higher spatial resolution imagery could be used 

without fusion techniques. The Open Data Cube (ODC) is an innovation by 

Geoscience Australia and partners to harness the power of satellite imagery that is 

sun-synchronous ï captured at regular intervals. The ODC includes a set of 

programmatic libraries as well as a backend database of Landsat, Sentinel and 

MODIS imagery that are corrected for various attenuations such as atmospheric and 

topographic effects. Here we test the potential of Sentinel imagery from the ODC for 

computing phenometrics. This imagery is processed to ensure an image is available 

consistently every 7 days and is supplied with a spatial resolution of 10 m in the visible 

and near infrared regions of the spectrum 

Species distribution models (SDM) correlate spatial predictors (e.g., slope of terrain, 

incoming solar radiation) with species occurrences (Guisan and Thuiller, 2005). SDMs, 

by themselves, are powerful tools for mapping a species or a set of species ecological 

niches in locations not yet fully explored. However, their aim in this research is to add 

context to the phenometrics ï for example, if a highly productive species is also found 

in GDV habitat then it improves the likelihood of it being GDV. In contrast, highly 



productive vegetation (e.g., irrigated fields) may be found outside of GDV habitat, 

which can then be down weighted in the final model.   

This study was undertaken in collaboration with several prominent mining companies 

and government departments. The steering committee consisted of members from Rio 

Tinto, BHP, Roy Hill, FMG, Atlas Iron, DWER and DBCA. All mining companies have 

mining tenements in the vicinity of the southeast Pilbara region study area. Most 

mining tenements have been mapped in whole or in part using fine scale imagery like 

aerial photographs, other airborne imagery (e.g., DMSI) or more recently from satellite 

imagery (e.g. WorldView 2/3). This finer scale mapping can be exploited using coarser 

imagery with larger extents. Fractional cover mapping is one method that makes use 

of an image that has higher resolution relative to a second image. We use it in this 

research to extrapolate existing mapping to derive a layer representing the fraction or 

percentage or GDV in each pixel at the tenement scale. Ensemble modelling is 

proposed to integrate these three sources of evidence (phenometrics, SDMôs and 

fractional cover) and to provide a measure of model uncertainty.  

Once GDV has been detected it requires monitoring for deviations from a baseline 

representative of a pre-impact period. Change detection methods have progressed to 

incorporate time series of imagery by fitting harmonic regressions to vegetation index 

transformations. Breakpoints in the harmonic are used to trigger an alert that 

something has changed. The larger and more prolonged the deviation from the initial 

harmonic model, the greater the change at that pixel (Brooks et al., 2014). 

This project aims to develop validated remote sensing-based methods for detecting 

and monitoring GDV in the Pilbara bioregion of Western Australia. It has the following 

objectives: 

1. Summarise temporal sequences of imagery using phenometrics based on 

calibrated 10 m resolution Sentinel imagery.  

2. Identify the suitable GDV habitat.  

3. Extrapolate existing layers of mapped GDV into a fractional cover map.  

4. Integrate all layers into an ensemble model that incorporates uncertainty. 

5. Monitor GDV locations for change over time relative to a benchmark.  

 



2 Methods and Materials 
 

2.1 Datasets 

 

We assembled 5865 data points of the three key GDV species from an alliance of five 

mining stakeholders in the Pilbara region (Figure 1). As each survey was taken at 

different times, by different people and with differing equipment, we inspected each 

point and aligned to tree crowns shown on the basemap imagery provided in ArcGIS. 

Where there was ambiguity or duplicates of the same plant, we deleted the record 

from the master database. We separated the points into eight discrete groups using 

OPTICS density-based clustering (Kriegel et al., 2011) with minimum number of 

features set to 30 and sensitivity set to 5 to emphasise fewer but bigger clusters 

(Figure 1). This allowed for us to test for differences between suitable phenometrics 

across the study area. 

 

Figure 1 ï Data points (5865) collected over the Pilbara region of Western Australia 
were used for training and testing model development. To determine if model inputs 
were spatially and temporally stable, the points were separated into eight groups and 
tested using imagery acquired over three years (2018-2020).  

 



2.2 Phenometrics 
 

To identify a phenometric-based model for GDV prediction that is stable across space 

and time we first characterised their phenology, extracted a suite of phenometrics, and 

then explored discrimination potential by comparing area under the curve (AUC) 

statistics from receiver operating characteristic (ROC) curves for each. The ROC curve 

is a graph of the false positive rate (x-axis) against the true positive rate (y-axis). and 

the AUC is a summary performance measurement that is calculated using the 

trapezoidal rule of the area under the ROC (Pontius and Schneider, 2001). In our 

implementation, the AUC measures how much separability there is between GDV and 

background samples (other land covers). The higher the AUC, the better the 

separability, with 1 representing perfect separation, with 0.5 suggesting separation is 

no better than random (Fielding and Bell, 1997). We hypothesised that healthy GDV 

would remain greener for longer periods of the year relative to coexisting shrubs and 

grasses and thus phenometrics related to annual productivity would best assist in their 

discrimination.  

 

2.2.1 Characterisation of Pilbara GDV 
 

The moisture adjusted vegetation index (MAVI) proposed by Zhu et al. (2014) was 

computed from Sentinel 2A/B imagery acquired from the Open Data Cube for 2018, 

2019 and 2020. To characterise and explore the differences between GDV and 

background (a random sample within each group equalling the presence point sample 

size)over space and time we extracted MAVI for pixels coinciding with tree 

observations (Figure 1) over the three years and plotted the mean for each day-of-

year sampled against the study area mean. This enabled observation of the behaviour 

of GDV over both space and time and with respect to the regional mean allowing quick 

determination of locations that were underperforming. 

  

2.2.2  Phenometrics and Variable Selection 
 

We used custom written python code to generate 18 phenometrics, which are 

illustrated in Figure 2. The MAVI index was resampled to a weekly frequency using a 

rolling median approach consisting of three images. Each pixel was sampled over the 



year and smoothed by fitting a Savitzky-Golay smoother (Figure 2). Outliers were 

filtered using a median threshold with a factor of 2, which limits removal to only the 

most significant. Both clouds and outliers are post-filled using an interpolation 

approach. The start of season (SOS) and end of season (EOS) were based on the 

seasonal amplitude (AOS), which is calculated from the base level (BSE) and the 

maximum value for each season (POS). The SOS occurs when the left part of the 

smoothed curve reaches 50% of the AOS.The EOS is the same but defined for the 

right side of the curve. Other options could be implemented and are documented in 

Eklundh and Jönsson (2017). Definitions for all other metrics are provided in Table 1.  

 

Figure 2 A smoothed time-series of one hypothetical pixel showing a typical MAVI 
response over one year of samples. Annotated are the 18 phenometrics extracted. 
See Table 2.1 for a definition of the abbreviations.  

 

2.2.3 Phenometrics and Variable Selection 

 

To determine the most useful variable or variables for predicting GDV habitat we 

partitioned the dataset into 80% training and 20% testing. The testing dataset was 

used to perform a jackknife of the AUC, which is used to identify variables that have 

important individual effects, i.e., not in combination with other variables (Elith et al., 



2010). We used clustering analysis to determine which variables offered similar levels 

of discrimination over all groups over the three study periods (2018-2020). 

 

Table 1. Summary of each phenological metric generated provided in alphabetical 

order. Phenometrics with /T have both a MAVI value and a time value variant. Those 

with (T) are only measured in time.  

Code Name Description 

AOS Amplitude of Season The amplitude of VI values for season. 
BSE Base Mean of the lowest VI values on the left and right of peak value. 
EOS/T End of season VI at the end of season and time this occurred in day of year 
LIOS Long Integral of Season Represents the total productivity of vegetation when in season. 
LIOT Long Integral of Total Represents the total productivity of vegetation throughout the season. 
LOS(T) Length of Season Length of time (number of days) between the start and end of season. 
MOS Middle of Season Mean vegetation value and time of values in top 80% of season. 
POS/T Peak of Season Highest VI value and time this occurred in day of year. 
ROD Rate of Decrease The rate of vegetation "green down" at the end of season. 
ROI Rate of Increase The rate of vegetation "green up" at the beginning of season. 
SIOS Short Integral of Season Represents the seasonally active vegetation. 
SIOT Short Integral of Total Represents total vegetation productivity throughout the season. 
SOS/T Start of Season VI value at the start of the season and time this occurred in day of year. 
VOS/T Valley of Season Lowest vegetation value and time this occurred in day of year. 

   

 

   

2.3 Species Distribution Modelling 

Habitat modelling, also known as Species Distribution Modelling (SDM), and 

Ecological Niche Modelling (ENM), attempts to identify habitats over broad areas 

based on exemplars (e.g. points of the target) and environmental correlates. A variety 

of machine learning techniques have been applied (see Lorena et al. (2011) for an 

overview of nine techniques), including the widely used Random Forest regression 

technique. The Random Forest algorithm is a supervised learning method that can be 

used for regression or for classification. Under regression mode the algorithm creates 

multiple decision trees and averages them resulting in a layer from 0 to 1, where 1 is 

high likelihood of preferential habitat and 0 is not. Under classification it takes the mode 

of all decision trees, resulting in a layer showing either presence (1) or absence (0) of 

the target. Both methods improve the accuracy and mitigate overfitting issues found 

by using singular decision trees (Friedman et al., 2001). Here, we utilise regression 

mode. Each decision tree constructed during model training is derived from the input 

species occurrence locations and the coinciding environmental variables values at 

each location.  

 



2.3.1 Topographic Derivatives 
 

Topographic derivatives representing environmental data can be generated from 

remotely sensed digital elevation model (DEM) data provided from platforms such as 

the Shuttle Radar Topographic Mission (SRTM) or airborne light detection and ranging 

(LiDAR) sensors and used as input variables. Correlates between these variables and 

known GDV locations can be used to model the potential habitats of these species at 

the landscape scale.  

To describe the topographic characteristics of GDV species, LiDAR data for various 

mining tenements in the Pilbara region were obtained from tenement owners. Ground 

(last) returns were interpolated into a 10 m raster grid using Binning interpolation with 

mean cell aggregation to create a digital terrain model (DTM), which matched the 

resolution of the Sentinel imagery being used. Raster surfaces were generated for 

nine preselected topographic variables from the LiDAR-based DTM based largely on 

Robinson et al. (2019). These nine variables were aspect-eastness, aspect-northness, 

curvature, dissection, slope, solar radiation, topographic position index (TPI), 

topographic wetness index (TWI) and topographic ruggedness index (TRI). These 

variables were chosen for their influence on the distribution of moisture. In addition, 

the raw DTM was included as a variable (i.e., elevation above sea level). 

Aspect, curvature, slope and solar radiation were calculated using tools available in 

the Spatial Analyst Toolbox of ArcGIS Pro 2.7 (ESRI, 2021). Curvature values of 0 

suggest flat terrain, whereas negative and positive curvature values indicate convex 

and concave terrain, respectively. Slope represents the inclination of slope in degrees 

ranging from 0 to 90. Aspect-northness and aspect-eastness were calculated by first 

transforming aspect degrees into radians and then taking the sine and cosine, 

respectively. Values for aspect-eastness and aspect-northness range from -1 to 1, 

representing west to east and north to south facing pixels, respectively (Samis & 

Eckert, 2009). Dissection, which is a measure of how incised the landscape is at each 

cell, was calculated based on Evans (1972). Solar radiation represents the amount of 

solar radiation received from the sun, considering the target geographic area, 

atmosphere, site latitude, elevation, sun angle and shadow of the landscape (Fu & 

Rich 2002). The output raster represents the total amount of incoming solar radiation 

in watt hours per square metre (WH/m2) per annum.  



Calculation of the TPI, TRI and TWI were achieved using python within ArcGIS Pro. 

The TPI compares the elevation of each cell in a DEM to the mean elevation within a 

specified neighbourhood around that cell and was calculated using a 30 × 30 m 

neighbourhood size. Positive TPI values represent locations that are higher than the 

average of their neighbourhood window (e.g., ridges), negative values are lower (e.g., 

valleys), and flat areas are close to 0 (Guisan, Weiss & Weiss, 1999). The TRI was 

used to quantify terrain heterogeneity and was based on Riley, De Gloria and Elliott 

(1999). The TWI was used to quantify topographic control on hydrological processes 

and was based on Gessler et al. (1995). 

Finally, a canopy height model (CHM) was derived from the LiDAR data to 

demonstrate its potential application as a vegetation mask and SDM model variable. 

First returns were interpolated into an DSM (digital surface model) via the same 

method used to derive the DTM described earlier. The CHM was calculated by 

subtracting the DTM from the DSM (Lisein et al., 2013) and canopy heights <1 m were 

used to mask out non-GDV. 

 

2.3.2 SDM Creation 
 

We wrote custom python code (collectively known as ñNicherò) to generate Random 

Forest-based SDMs from user-provided plant locations and topographic derivatives 

for GDV characterisation in the Pilbara bioregion of Western Australia. Nicher employs 

the Scikit-learn machine learning library (Pedregosa et al., 2011) and is designed to 

accept topographic derivatives that have been pre-derived from DEM data, but 

currently it does not generate such variables itself. This is to cater for more broad use 

than just GDV species, where users can consider their target species and choose 

variables that are mostly likely predictors of its niche.  

To demonstrate Nicher, SDM was performed using 173 occurrence locations 

representing three key groundwater dependent species (Eucalyptus victrix, E. 

camaldulensis and Melaleuca argentea) captured from the Pilbara region of Western 

Australia. As per most correlative SDM techniques, pseudo-absence occurrence 

points are required for model fitting. A maximum of 5000 pseudo-absence points were 

generated randomly within the study area boundary. As these values were computed 

randomly, it is possible that some were generated at the same point as putative GDV. 



Given the size of the sample it is unlikely that this would affect accuracy greatly, 

although this is dependent on the density of GDV in the study area. The topographic 

derivative values were extracted at each location, and the presence and pseudo-

absence occurrence locations were combined and then split into training and testing 

sets, with 10% of the processed data designated as the testing set. Nicher was then 

created using 500 estimators and was set to undertake five cross-validations using the 

training dataset. Finally, the model was fit, output classes were converted into class 

probabilities, and probabilities were mapped onto a raster grid. This process was 

repeated with the raw canopy height model added as a model variable. 

 

2.4 Fractional Cover Mapping  

Fractional cover mapping (FCM) is a technique that takes as input a lower resolution 

image and first determines the percentage of pixels that represent the landcovers of a 

higher resolution image. As shown in Figure 3, using a high-resolution image that is 

four times smaller than a lower resolution image, the percentage of pixels that are 

GDV or not GDV are translated into new layers.  

To determine GDV pixels, we used prior mapping that had been conducted by external 

parties as input and set the rest of the classes to ñNot GDVò. The GDV and Not GDV 

layers transformed into percentages (Figure 3) are then used as evidence in a random 

forest regression against the image bands of the lower resolution image. The output 

is then a prediction of the percentage of pixels making up the input land covers, here 

shown as just óGDVô and óNot GDVô but any number of classes (or land covers) are 

permissible. 

 



 

Figure 3 ï Depiction of the algorithm used for fractional cover mapping. The 

percentage of pixels of a lower resolution image are determined on a higher resolution 

image before being used in a random forest regression against image bands. The 

output provides predicted percentages of the input classes (here GDV or not GDV).  

 

 

2.5 Ensemble Model  

Dempster-Shafer Belief Modelling (DSBM) was used to combine the three outputs 

(phenometrics, SDM and FCM). DSBM requires a frame of discernment (aka as a 

universe of discourse) where all possible hypotheses and combinations of hypotheses 

are disclosed. We had two singleton hypotheses [IS GDV] and [IS NOT GDV] with a 

third non-singleton hypothesis [IS GDV, IS NOT GDV] used to represent uncertainty 

(Figure 4). For example, if a pixel had a value of 0.6 (on a scale of 0 ï 1) representing 

the basic probability of belonging to the set [IS GDV] then the complement (1-0.6 = 

0.4) is given to the uncertainty hypothesis [IS GDV, IS NOT GDV] and no value is 

given to the opposing hypothesis [IS NOT GDV]. Likewise, if a pixel has a value of 0.7 

in favour of the hypothesis [IS NOT GDV] then 0.3 is given to the uncertainty 

hypothesis and not to the opposing hypothesis [IS GDV].  

 



Deciding which hypothesis each layer of evidence supports is not always clear cut. 

The evidence used to support the hypothesis [IS GDV] were the phenometrics and the 

SDM layers (Figure 4). Whilst these layers could certainly be inverted and used for the 

[NOT GDV] hypothesis we felt that the phenometrics showing highly productive 

vegetation represented our best evidence in favour of GDV being present. Likewise, 

we felt that highly suitable habitat was excellent, yet indirect, evidence of GDV. The 

evidence used to support the hypothesis [NOT GDV] was an inverted layer of the 

fractional cover mapping where a value of 1 represented land covers like stony plains 

and a value of 0 represented a high percentage likelihood of GDV (Figure 4). The idea 

being that by producing evidence images that support the negative hypothesis, we can 

further refine where GDV is likely to occur by applying evidence that reduces the 

likelihood that it will not be there.  

 

Figure 4 ï The frame of discernment showing the two singleton hypotheses and one 

non-singleton hypothesis representing uncertainty. The phenometrics and SDM layers 

were used in support of the [IS GDV] hypothesis and an inverted fractional cover map 

was used to support the hypothesis [IS NOT GDV].  

 

 

We used Dempster-Shafferôs rule of combination to combine our layers in support of 

their respective hypotheses. The mathematically inquisitive should see Equation 4 of 

Jøsang & Pope (2012). Essentially the logic is as follows, where support for the non-



singleton hypothesis is determined by using the complement of the images (e.g. 1-

SDM_site represents the degree of support for [ISGDV, IS NOT GDV]:  

¶ #combine all site information 

¶ bpa_site = ("phenometrics_site" *  "SDM_site")  + ((1  -  "SDM_site")  *  

("phenometrics_site"))  +  ((1  - "phenometrics_site")  *  ("SDM_site")) 

¶ #combine output of above with the non-site imagery (FCM) 

¶ IS GDV = ("bpa_site" * (1 - "FCM")) / (1 - ("FCM" * "%bpa_site%")) 

¶ IS NOT GDV =  ("FCM%" * (1 - "%bpa_site%")) / (1 - ("%FCM%" * 

"%bpa_site%")) 

¶ PLAUSIBILITY = 1 ï ñIS NOT GDVò 

¶ BELINT = ñPLAUSIBILITYò ï ñIS GDVò 

PLAUSIBILITY denotes the degree to which we cannot reject our hypothesis [IS GDV], 

but where we require more evidence. To put it in context, thereôs some evidence to 

suggest GDV could occupy that pixel, but not enough to be certain, i.e., there is 

uncertainty. Such uncertainty can only be overcome by additional data or sampling 

and provides an excellent opportunity for feedback loops to improve the modelling.  

The difference between the IS GDV and PLAUSIBILITY layers is the BELIEF 

INTERVAL. The higher the BELINT the more uncertain we are of confirming the 

hypothesis and is thus a useful map for directing field crews to locations of plausible, 

but uncertain, GDV locations.   

It is not necessary to use these exact layers and users can also add additional layers 

to the universe of discourse if they wish. However, as a guide, please note:  

¶ It is necessary to have at least one layer supporting each of the singleton 

hypotheses, otherwise, it is not possible to compute the plausibility, or belief 

interval; and 

¶ If only one layer is available for a hypothesis (e.g. phenometrics supporting ñIS 

GDVò) then that will be the full support for that hypothesis and no combination 

of layers will be necessary.    

 



2.5 Near Real-time Monitoring 

Near real-time monitoring was achieved using the Exponentially Weighted Moving 

Average Change Detection (EWMACD) method of Brooks et al., (2014). This method 

works by computing a harmonic model for a training period of imagery representing 

the baseline (or pre-impact period) and comparing subsequent imagery to identify the 

residuals. Here, we test the methodology using a study area north of Ophthalmia Dam 

northeast of the town of in Newman (Figure 5). Constructed in 1981, it is suspected 

that a lack of flood events north of the dam wall contributed to vegetation degradation, 

along with overstocking and a prolonged period of drought (Fox et al., 2000). This area 

was targeted for this exemplar because of the dynamism in vegetation health since its 

construction.  

 

Figure 5 ï Study area north of the Ophthalmia Dam.  

 

 

 

 

 



3 Results 
 

3.1 Phenometrics 

 

3.1.1 Characterisation of Pilbara phreatophytes 
 

GDV species had considerably higher MAVI values over the course of the year at all 

sites, relative to background (pseudo-absence) points.. Average MAVI values peaked 

around Julian Day 70 (early March) and again around Julian Day 203 (late July) before 

declining monotonically (Figure 2.3). Despite a lower response in 2019, the cycles 

appear to be consistent across the Pilbara. Relative to the Pilbara average, Groups 1-

4 and 7 had consistently higher MAVI averages, whereas Groups 5, 6, and 8 were 

below the regional average (Figure 6).  

3.1.2 Phenometrics and Variable Selection 

Table 2.2 presents the AUC values for each of the eight areas based on the 18 

different phenometrics trialled. We identified eight phenometrics that averaged over 

0.9 from Table 2.2 (BSE, EOS, LIOS, LIOT, MOS, POS, SOS, VOS). These were 

consistently high across all groups and study periods. Notably, Groups 4 and 7 had 

almost perfect discrimination (0.98-0.99). The AUC values from all groups and study 

periods were used to construct a dendrogram and partition cluster plot for better 

visualisation of their discriminatory power and grouping into discriminatory ñfamiliesò. 

Figure 8 identifies four families of phenometrics based on the GDV data. The eight 

phenometrics identified made up a single family (cluster 4) suggesting there is likely 

to be minimal differences between the discriminatory power and hence any of them 

could be used. We have chosen to use the LIOT.  

 

 

 

 



 

Figure 6 ï MAVI response of phreatophytes versus background vegetation over 

three years at 7-day intervals at eight study sites in the Pilbara: A) Group 1, B) 

Group 2, C) Group 3, D) Group 4, E) Group 5, F) Group 6, G) Group 7 and H) Group 

8 (see Figure 2.1).  

 

 

 



 

Table 2. Areas under the curve for each of the eight groups generated using jack-

knife validation based on a random 20% partition for A. 2018, B. 2019, and C. 2020.   

A Metric Grp 1 Grp 2 Grp 3 Grp 4 Grp 5 Grp 6 Grp 7 Grp 8 Mean S.Dev 

 AOS 0.81 0.84 0.87 0.94 0.73 0.90 0.86 0.71 0.83 0.09 
 BSE 0.93 0.93 0.93 0.98 0.86 0.95 0.99 0.90 0.93 0.05 
 EOS_T 0.66 0.67 0.64 0.79 0.75 0.76 0.48 0.83 0.70 0.12 
 EOS  0.93 0.93 0.94 0.98 0.84 0.95 0.99 0.89 0.93 0.05 
 LIOS 0.91 0.91 0.90 0.97 0.84 0.92 0.99 0.87 0.91 0.05 
 LIOT 0.93 0.93 0.94 0.98 0.85 0.95 0.99 0.88 0.93 0.05 
 LOS 0.70 0.67 0.61 0.77 0.66 0.76 0.57 0.78 0.69 0.08 
 MOS 0.93 0.93 0.94 0.97 0.84 0.95 0.99 0.84 0.92 0.06 
 POS_T 0.76 0.77 0.81 0.92 0.64 0.54 0.95 0.65 0.75 0.15 
 POS  0.93 0.93 0.94 0.98 0.84 0.95 0.99 0.85 0.93 0.06 
 ROD 0.82 0.83 0.87 0.92 0.54 0.79 0.90 0.75 0.80 0.13 
 ROI 0.64 0.67 0.68 0.76 0.78 0.92 0.50 0.64 0.70 0.13 
 SIOS 0.81 0.83 0.85 0.94 0.77 0.93 0.93 0.68 0.84 0.10 
 SIOT 0.83 0.83 0.88 0.95 0.73 0.56 0.90 0.68 0.79 0.14 
 SOS_T 0.68 0.68 0.66 0.69 0.69 0.96 0.63 0.68 0.71 0.11 
 SOS  0.93 0.92 0.94 0.98 0.87 0.73 0.99 0.89 0.90 0.09 
 VOS_T 0.66 0.71 0.74 0.83 0.84 0.94 0.59 0.61 0.74 0.13 
 VOS 0.93 0.93 0.94 0.98 0.83 0.90 0.99 0.90 0.92 0.05 

B Metric Grp 1 Grp 2 Grp 3 Grp 4 Grp 5 Grp 6 Grp 7 Grp 8 Mean S.Dev 

 AOS 0.82 0.84 0.88 0.90 0.83 0.88 0.80 0.62 0.82 0.09 
 BSE 0.94 0.94 0.94 0.98 0.90 0.95 1.00 0.90 0.94 0.04 
 EOS_T 0.81 0.83 0.86 0.91 0.77 0.90 0.75 0.81 0.83 0.06 
 EOS  0.94 0.94 0.94 0.98 0.90 0.96 0.99 0.87 0.94 0.04 
 LIOS 0.93 0.93 0.93 0.93 0.90 0.93 0.93 0.87 0.92 0.02 
 LIOT 0.95 0.94 0.94 0.98 0.92 0.96 0.99 0.85 0.94 0.05 
 LOS 0.79 0.82 0.85 0.85 0.79 0.88 0.76 0.74 0.81 0.05 
 MOS 0.94 0.94 0.94 0.98 0.92 0.95 0.98 0.83 0.93 0.05 
 POS_T 0.79 0.81 0.87 0.90 0.65 0.82 0.69 0.65 0.77 0.10 
 POS  0.94 0.94 0.94 0.98 0.92 0.95 0.98 0.82 0.93 0.05 
 ROD 0.66 0.74 0.82 0.83 0.62 0.77 0.91 0.62 0.75 0.11 
 ROI 0.57 0.61 0.59 0.71 0.83 0.72 0.75 0.48 0.66 0.12 
 SIOS 0.88 0.87 0.90 0.91 0.89 0.90 0.73 0.64 0.84 0.11 
 SIOT 0.89 0.88 0.91 0.90 0.90 0.78 0.77 0.64 0.83 0.10 
 SOS_T 0.62 0.71 0.78 0.66 0.69 0.95 0.68 0.64 0.72 0.11 
 SOS  0.93 0.93 0.94 0.98 0.90 0.89 0.99 0.87 0.93 0.05 
 VOS_T 0.79 0.79 0.81 0.92 0.82 0.95 0.61 0.58 0.78 0.14 
 VOS 0.93 0.93 0.94 0.98 0.90 0.88 1.00 0.88 0.93 0.05 

C Metric Grp 1 Grp 2 Grp 3 Grp 4 Grp 5 Grp 6 Grp 7 Grp 8 Mean S.Dev 

 AOS 0.77 0.78 0.82 0.86 0.71 0.81 0.55 0.75 0.75 0.10 
 BSE 0.91 0.93 0.95 0.98 0.78 0.94 0.95 0.84 0.92 0.07 
 EOS_T 0.71 0.80 0.83 0.83 0.95 0.82 0.91 0.91 0.85 0.08 
 EOS  0.93 0.93 0.95 0.98 0.79 0.95 0.97 0.89 0.92 0.07 
 LIOS 0.83 0.89 0.94 0.95 0.84 0.94 0.97 0.88 0.91 0.06 
 LIOT 0.91 0.93 0.95 0.98 0.82 0.95 0.96 0.87 0.92 0.06 
 LOS 0.71 0.77 0.80 0.76 0.83 0.80 0.89 0.84 0.80 0.06 
 MOS 0.91 0.92 0.95 0.97 0.74 0.90 0.93 0.86 0.89 0.08 
 POS_T 0.85 0.78 0.73 0.81 0.67 0.62 0.81 0.76 0.75 0.08 
 POS  0.91 0.92 0.95 0.97 0.74 0.90 0.94 0.86 0.90 0.08 
 ROD 0.81 0.75 0.76 0.82 0.49 0.67 0.54 0.57 0.67 0.14 
 ROI 0.68 0.66 0.68 0.66 0.44 0.65 0.56 0.62 0.61 0.09 
 SIOS 0.69 0.78 0.87 0.92 0.75 0.91 0.58 0.78 0.79 0.12 
 SIOT 0.77 0.82 0.89 0.95 0.77 0.90 0.58 0.75 0.80 0.12 
 SOS_T 0.65 0.60 0.54 0.70 0.63 0.54 0.61 0.66 0.62 0.06 
 SOS  0.90 0.91 0.95 0.98 0.76 0.91 0.92 0.83 0.89 0.07 
 VOS_T 0.77 0.71 0.63 0.82 0.71 0.78 0.60 0.78 0.73 0.08 
 VOS 0.92 0.93 0.95 0.98 0.81 0.95 0.97 0.89 0.92 0.06 

 



 

 

Figure 7. The clustering dendrogram and partitioning cluster plot identified four 
ñfamiliesò of phenometrics based on AUC values.  

 

3.2 Species Distribution Modelling 

SDM results from the Nicher module are provided in Figure 8. Figure 8c presents a 

satellite image of an area with known GDV tree locations along a major drainage 

channel and vehicle track in the Pilbara. This vegetation, which was mostly restricted 

to the banks of the drainage line, were captured by Nicher using the nine derivatives 

(Figure 8b). As some mining infrastructure (such as cleared vehicle tracks) were 

returned by Nicher, the CHM was used to mask out any vegetation < 1 m in height 

(Figure 8c). This process successfully removed the vehicle track (Figure 8c). Finally, 

addition of the CHM as a model variable mapped the same general GDV extent along 

the drainage line, with the exception that more vegetation appears to have been 

captured on the drainage line margins as well as in additional drainage lines and stony 



flat areas to the north of the GDV occurrence points (Figure 9a, Figure 9d) in the 

northern drainage lines and stony flats. 

 

Figure 8 Several versions of the same Nicher SDM. Green points are known GDV 

species field occurrences. Coloured pixels represent GDV probability: blue is highly 

improbable and red is highly probable. Displayed: a) satellite image basemap; b) SDM 

based on nine derivative variables (and DEM); c) same SDM with vegetation < 1 m 

height masked out; and d) SDM based on nine derivative variables (and DEM) in 

addition to the CHM included as a model variable. 

Vehicle track 



Receiver operating characteristic (ROC) curves were constructed and the area under 

the curve (AUC; Fawcett, 2006) was calculated for both models (with and without the 

CHM variable), resulting in an AUC of 0.91 and 0.93, respectively. The balanced 

accuracy score was also generated for each model, providing an indication of the 

fraction of correct predictions that were made by the model when compared to the 

testing set. For the models with and without CHM, the balanced accuracy of 

classification returned was 0.79 and 0.87, respectively. This suggests that while both 

models performed strongly, the inclusion of the CHM variable improved model 

accuracy. 

3.3 Fractional Cover Mapping 

Figure 9 shows previous mapping of several land covers in the top left-hand portion of 

the image. The orange class contained GDV with mixed understory and was used to 

train the image on the GDV class. All other classes were converted into one absence 

class. The output shows green pixels as having a high fraction of GDV in them 

whereas white to brown pixels have a low fraction of GDV. This image was then 

inverted so that the whitest areas represented the ñdisbeliefò hypothesis (ñIs Not GDVò; 

see next) in the ensemble modelling. 

 

Figure 9 Fractional cover map of GDV species extrapolated from partial mapping of 

the area.  

 



3.4 Ensemble Modelling 

Figure 10 show the outputs of the Dempster-Shafer Belief ensemble model. Belief in 

the hypothesis [IS GDV] shows up most riparian channels in the area as likely 

containing GDV (Figure 10A). The greatest disbelief is on the stony plains away from 

the riparian channels (Figure 10B). Plausibility softens the belief map by providing 

extra pixels in proximity to high belief GDV pixels (Figure 10C) and the Uncertainty 

map (Figure 10D) shows the difference between the Plausibility and the Belief layers. 

Areas with the highest uncertainty would benefit most from additional sampling and/or 

new evidential layers in the ensemble.  

 

Figure 10 Outputs of the Dempster-Shafer Belief ensemble model. (A) Belief that the 

pixel contains GDV. (B) Belief that the pixel does not contain GDV (disbelief). (C) 

Plausibility that a pixel may contain GDV, but more evidence is needed. (D) Locations 

shown in red are those where more evidence would be most beneficial in reducing 

uncertainty.  



3.5 Near Real Time Monitoring 

An undisclosed area north of the dam was selected and given the unique ID ï A1 

(Figure 11). It was chosen because we identified historical degradation of Eucalyptus 

spp during ground-truthing in July 2019.  

 

 

Figure 11 ï Study area used to test the NRT algorithm 

 

The baseline period is shown in purple (Figure 11) and corresponds to 1/1/1999 to 

1/1/2001 and chosen because of its apparent stability and was several years before 

obvious degradation occurred. A harmonic model was created for the baseline period, 

which fit the vegetation index closely (R2 = 0.9) for all periods up to 2006. Subsequent 

to that, the vegetation index deviated significantly from the harmonic, breaking the 

lower bounding confidence limit in 2006 (Figure 11).  

 

 
 

Figure 11 ï Training of the time series of MAVI imagery over one pixel with a harmonic 

model. The harmonic breaks beyond the lower control limit in late 2006. 

 

Significant changes can also be observed using the change deviation chart (Figure 

12). This picks up the apparent decline around 2006 and onwards and provides a 

A1 



magnitude of how far the pixel has deviated from the harmonic model. Change 

deviations are grouped by zone, which can be interpreted as shown in Figure 13. For 

example, Zone -11 represents the most significant decline, which is 19 deviations 

below the baseline vegetation. A change deviation of 0, represents similar vegetation 

vigour to the baseline in terms of seasonal cycles and MAVI. Figure 14A shows map 

representation of the change deviation magnitude for each pixel and summarised into 

the zone classes as a polygon average (Figure 14B). 

 

Figure 12 ï The change deviations resulting from the EWMCD method. Vegetation 

decline begins to register in 2006 and continues to be compared to the training period 

into the future. The larger the change deviation the more different it is from the pre-

impact period (1999-2001).   

 

Figure 13 ï Interpreting change deviation zones and colours.    

 



 

Figure 14 ï (A) Representation of change deviation at the pixel level vs (B) alert system 

representation using the change deviation zone classification method.   
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4 Conclusions 
 

Phenometrics provide the ability to harness the power of temporal resolution available 

in sun-synchronous remote sensing imagery. The power of Sentinel imagery, with 5-

day revisit (7-day rolling median) and 10 m spatial resolution, can open new doors not 

previously available using 250 m MODIS imagery. We identified at least eight 

phenometrics that could discriminate between GDV and non-GDV, including LIOT, 

which we hypothesised would provide separation based on year-round productivity.  

Interpolated Lidar data provides fine scale topographic data that can be used to derive 

a series of inputs for habitat modelling. Random forests coupled with these derivatives 

and known GDV locations can be used to create habitat models with demonstrated 

high accuracy in the Pilbara bioregion, where most GDV is restricted to riparian zones. 

GDV can be mixed with other land covers, even at 10 m resolution. Fractional mapping 

is a way to extract the fraction of GDV within a pixel and express it as a percentage. It 

is also a suitable method for scaling up from fine scale mapping and extrapolating over 

entire tenements.  

Ensemble modelling using Dempster-Shafer Belief Theory allows the integration of 

layers of information that are indirect evidence of GDV to produce maps relating to the 

belief of GDV being present, the disbelief of presence as well as providing a level of 

uncertainty in the prediction. The latter is useful for model refinement through new 

knowledge and/or data layers.  

Near-real-time monitoring allows the user to track important changes in vegetation 

over time to detect anomalies that may be indicative of GDV loss (or regrowth). Its 

ability to provide alerts can be used for early detection of decline, potentially from 

dewatering. 
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Appendix 1 - Tutorial 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 Introduction 
 

Removal of unwanted groundwater from mine pit dewatering and other associated operations 

can affect the health of GDV, which relies on a stable water table for its water requirements. 

Monitoring GDV is thus a requirement around mining leases but is poorly targeted. Narrowing 

the search space using remote sensing imagery is the first step towards a time saving, cost 

efficient, and comprehensive monitoring program that can provide peace of mind that 

dewatering is being conducted appropriately.  

Tenement Tools is a free and open-source ArcGIS Pro 2.8 plug-in that offers a suite of tools 

to assist users in detecting and monitoring potential GDV areas within the Pilbara region of 

Western Australia at a tenement-scale.  

A brief overview of the tools currently on offer include: 

 

COG 

Query, download and explore a ócubeô of analysis ready satellite data (Landsat 5, 7, 

8 or Sentinel 2) from the Digital Earth Australia (DEA) for any given study area and 

time period in Australia. 

GDVSpectra 

Utilise a field-validated, seasonally-weighted model to detect potential GDV for a 

given study area and time period. Also offers tools to detect vegetation greenness 

trends and change over time. 

Phenolopy 

Generate metrics from a year or more of satellite imagery depicting various 

characteristics of vegetation life cycle (phenology). Notable metrics include peak of 

season (POS), start of season (SOS) and productivity (LIOT, SIOT). 

Nicher 

Generates a species distribution model (SDM) for a given set of elevation-based 

topographic or climatic variables and known field-observed occurrences points of a 

target species. Used to detect suitable habitat (i.e., niche) for a given species in a 

landscape. 

VegFrax 

Performs Fractional Cover Mapping (FCA), given a high-resolution pre-classified 

vegetation map and a ócubeô of lower-resolution satellite imagery. Useful for 

extrapolating vegetation type mapping over larger spatial extents. 

Ensemble 

Combine two or more maps of evidence (from above tools or other) into one ensemble 

map via Dempster-Shafer theory. Useful to refine potential GDV areas by combining 

relevant evidence. Also provides outputs that help highlight areas that may be under-

sampled or low in model confidence. 



Monitor 

Perform on-going, near real-time vegetation monitoring via modern change detection 

algorithms for one or more monitoring areas for any area in Australia. Provides tools 

to create monitoring areas, set pre-impact periods and model parameters, and result 

graphing. 

 

This document intends to offer a generic walkthrough of the release version (1.0.1) of the 

Tenement Tool suite. 

 

1.1 Requirements 

¶ ArcGIS Pro version 2.8 or 2.9 

¶ At least 8gb of ram (>=16gb recommended) 

¶ Fast and stable internet connection 

¶ Access to the following websites (IT may need to open): 

o https://conda.anaconda.org 

o https://repo.anaconda.com 

o https://conda-forge.org/ 

o https://data.dea.ga.gov.au 

o https://explorer.sandbox.dea.ga.gov.au/stac 

o https://explorer.sandbox.dea.ga.gov.au/stac/search 

 

1.2 Setup and installation 
 

Installation instructions are provided on the official Tenement Tools GitHub page located at 

https://github.com/frontiersi/tenement-tools. Please complete the installation process before 

proceeding with this tutorial. 

 

1.3 Tutorial data 
 

Data has been provided for this tutorial and is located on the GitHub page on the releases 

page at https://github.com/frontiersi/tenement-tools/releases. Download the Tutorial.zip file for 

your relevant version before proceeding with this tutorial. Please note, most of this data is 

simulated and is simply for demonstration purposes. 

 



1.4 Known issues 
 

The Tenement Tools plugin has been thoroughly bug checked for ArcGIS Pro versions 2.8 

and 2.9 and can now be considered stable. Please see the known bugs section of the GitHub 

page at https://github.com/frontiersi/tenement-tools for any rare issues that remain. 

 

1.5 Tutorial preparation 
 

Letôs setup ArcGIS Pro for the tutorial. First, ensure you have followed the installation 

instructions on the GitHub page and have a fresh ArcGIS project running on your screen. Also 

ensure you have added the tenement tools toolbox to your current project. 

If no map is currently visible on your screen, click the Insert tab on the top menu and create a 

new project map. Otherwise, use the default map that already exists: 

  

The default map will likely have a basic looking topographic basemap of Australia. If you prefer 

seeing an aerial image, click the Map tab and change the basemap layer to Imagery: 

 

Finally, we need to add our study area boundaries to the currently active map. If you havenôt 

already, unzip the tutorial data contained with the Tutorial.zip anywhere on your computer.  

Then, click the Add Data button on the top menu, navigate to the GENERAL folder within, and 

add the two study area shapefiles tutorial_study_area_wgs84.shp and 

ophthalmia_study_area_wgs84.shp to the current map, like so: 



 

 

You should see the two layers appear on the contents pane, as well as on the main map view 

area.  

We will focus on the tutorial area first. Right click the layer called tutorial_study_area_wgs84 

in the contents pane and click Zoom to Layer: 

 

Click Add 

Data 

Select both 

shapefiles in 

GENERAL 

folder 
Click OK 



The map view will zoom to the selected area and will look similar to this (likely with different 

colouring):  

 

Spend some time changing the symbology of the study area feature (e.g., remove the fill 

colour and set the border to black). Likewise, have a look around the study area and the 

underlying aerial imagery to get a sense of the area. 

This particular area is in the Hamersley Range in the Pilbara, Western Australia. It is located 

approximately 60km south-east of Pannawonica. Based on relatively recent aerial imagery it 

appears to be a relatively untouched by disturbance with the exception of significant bushfires. 

 The majority of the area appears to be plateaus, mesas and hills of Triodia grasslands with 

scattered shrubs and the occasional moderate to large drainage area containing Eucalyptus 

species. 

 

 

  



2 COG Fetch tool 

2.1 Introduction 

The COG Fetch tool is used to query and download analysis ready satellite images for any 

area in Australia. This is achieved using Digital Earth Australia (DEA) Amazon Web Services 

(AWS) public data bucket (https://data.dea.ga.gov.au/). 

 

Satellite data offered by Tenement Tools includes imagery from the Landsat 5, 7, 8 and 

Sentinel 2A, 2B satellite platforms. Landsat provides an archive of 30m resolution imagery 

starting 1986 to today (and on-going), whereas Sentinel provides imagery starting in 2016 and 

on-going today at a higher resolution of 10m. 

The specific Landsat and Sentinel products available include: 

¶ Landsat 5 TM Surface Reflectance NBART ARD (ga_ls5t_ard_3) 

¶ Landsat 7 ETM+ Surface Reflectance NBART ARD (ga_ls7e_ard_3) 

¶ Landsat 8 OLI Surface Reflectance NBART ARD (ga_ls8c_ard_3) 

¶ Sentinel 2A Surface Reflectance NBART ARD (s2a_ard_granule) 

¶ Sentinel 2B Surface Reflectance NBART ARD (s2b_ard_granule) 

These products are all analysis ready and have been geometrically, atmospherically, and 

terrain corrected using a Nadir-corrected BRDF Adjusted Reflectance with Terrain illumination 

correction (NBART) method. They also come with a ópixel qualityô band that allows us to 

remove cloud, shadow and other invalid pixels. 

A deeper overview of these DEA products is provided on these products here: 

https://docs.dea.ga.gov.au/notebooks/Beginners_guide/02_DEA.html 

 

2.2 Use the COG Fetch tool 

2.2.1 Considerations 

¶ The input study area feature should be in the WGS84 (EPSG: 4326) coordinate system. 

¶ If one (or many) polygons are selected, the minimum bounding box of the selected 

polygon(s) will be used, else the minimum bounding box of all features will be used. 

https://data.dea.ga.gov.au/
https://docs.dea.ga.gov.au/notebooks/Beginners_guide/02_DEA.html


¶ The cloud mask data provided by DEA is not perfect and sometimes misses a clouded 

image. 

 

2.2.2 Initialise the tool 

Click the COG Fetch (ODC) tool from the Tenement Tools top menu tab, like so: 

 

The COG Fetch (ODC) geoprocessing panel will appear on the right side of the screen. 

 

2.2.3 Download satellite data 

For the first exercise, we will download several yearsô worth of Landsat data for our current 

tutorial study area.  

Set the parameters as follows: 



 

Select the tutorial_study_area_wgs84 feature layer as the input area of interest. 

The above parameters are requesting all available Landsat satellite data from DEA for the 

period 01/01/2013 to 31/12/2018. Weôve requested more satellite data than we need, but 

having a range of years offers some flexibility in upcoming analyses.  

Save the output NetCDF file anywhere on your computer and call it ls_13_18.nc.  

Leave the remaining parameters as default (though hover over their headings to see an 

explanation of what each does).  

When ready, click the Run button at the bottom of the panel. The download should take 

approximately 5 - 10 minutes on a decent network. 

When this process is complete, you should see a single .nc file approxmately 700mb in size 

at the output location set above.  



3 COG Explore tool 

3.1 Introduction 

The COG Explore tool is used to visualise, explore and graph satellite imagery NetCDFs 

downloaded via the COG Fetch tool. Additionally, the tool converts the data into a format (a 

.crf file) that can now be used in any of ArcGIS Proôs powerful multi-dimensional analyses, 

greatly expanding the use of the Tenement Tools plugin. 

 

3.2 Use the COG Explore tool 

3.2.1 Considerations 

¶ The input must be a NetCDF file of Landsat or Sentinel data obtained specifically from the 

COG Fetch (ODC) or COG Fetch (Legacy) tools. 

¶ Currently the tool only supports the visualisation of the NetCDF data as a vegetation index. 

 

3.2.2 Initialise the tool 

Click the COG Explore tool from the Tenement Tools top menu tab, like so: 

 

The COG Explore geoprocessing panel will appear on the right side of the screen. 

 



3.2.3 Visualise satellite data 

Itôs worth spending some time visualising and exploring the vegetation of the study area over 

time. Set the parameters as follows: 

 

The above parameters will generate an image displaying the vegetation index known as MAVI 

(Moisture-adjusted Vegetation Index; Zhu et al. 2014) for every date captured within the input 

raw satellite NetCDF ls_13_18.nc.  

Set the output folder to any appropriate folder on your computer for the outputs of the tool (a 

.crf file). Finally, set the vegetation index to MAVI (though feel free to use any),  

Leave the remaining parameters as default. These defaults will remove any pixels with clouds, 

shadows or invalid data and remove dates where cloud cover is over 10% of the study area. 

When ready, click the Run button at the bottom of the panel. When finished, the satellite data 

represented as MAVI will automatically appear on your map. 

 

3.2.4 Visually explore MAVI over time 

The output shows MAVI values. The higher the value, the ñgreenerò the vegetation is in the 

landscape. Based on the output symbology, the ñgreenestò vegetation is coloured blue. 



The first image shown on the map is the first valid date in original NetCDF, which is early April 

2013. This indicates no cloud-free images existed between January and March in 2013. 

Additionally, this image appears to be showing a large bush fire in the north-west (this area is 

prone to them).  

Letôs see how other images look. Click on the cog_explore.crf layer in the contents panel (1) 

to enable to Multidimensional tab (2). Browse different images at different dates using the 

StdTime drop-down control (3): 

 

Take your time scrolling through some of the different dates to get a better idea of how the 

vegetation changes throughout the years. 

Most of the ñgreennestò vegetation appears to occur in the riparian areas associated with 

drainage lines and deeply incised valleys. 

 

3.2.5 Visually graph MAVI over time 

Another tool in our toolkit is the ability to graph MAVI over time using the temporal profile tool. 

On the same Multidimensional tab show in (2) above, click on the Temporal Profile button: 

 

An empty graphing panel should appear at the bottom half of your screen along with some 

controls in a panel on the right. 

1: Click new layer 

 

2: Click multi-

dimensional 

tab 

 

3: Change dates 

 



We can now start drawing areas around different vegetation types on our current map and 

see the vegetation history as a graph. To create an area, select an area of interest tool (1), 

draw an area around an area of vegetation (2) and watch the vegetation history for that area 

appear in the graph (3).  

 

You can draw as many areas as you want. Spend some time graphing different types of 

vegetation. Do different types of vegetation have different seasonal cycles? What does the 

2013 bush fire area look like? 

  

1: Define 

area 

 
2: Draw 

area 

3: See on 

graph 



4 GDV Spectra  

4.1 Introduction 

The GDVSpectra tool is used to detect areas of potential groundwater dependent (GDV) 

vegetation using a time-series of satellite data. This is achieved using seasonally-weighted 

vegetation and moisture information derived from satellite images that are put through an 

Analytical Hierarchy Process (AHP) weighting process: 

 

The output is a series (or an aggregate if requested) of annualised GDV likelihood layers which 

highlight areas within a landscape that may or may not have a high likelihood of containing 

persistently green and moist vegetation (i.e., potential GDV). 



The GDVSpectra toolset also provides several additional tools to assist in subsequent 

monitoring of these areas using long-term trend analysis (e.g., Mann-Kendall trend analysis) 

or Change Vector Analysis (CVA). 

 

4.2 Generate GDV likelihood layers 

4.2.1 Considerations 

¶ The input must be a NetCDF file of Landsat or Sentinel data obtained specifically from the 

COG Fetch (ODC) or COG Fetch (Legacy) tools. 

¶ Three or more years of data is required in order to run the tool. 

¶ The tool is prone to seasonal fluctuation, so the combine outputs option is recommended 

to reduce variation. 

 

4.2.2 Initialise the GDV Likelihood tool 

Click the GDVSpectra Likelihood tool from the Tenement Tools top menu tab, like so: 

 

The GDVSpectra Likelihood geoprocessing panel will appear on the right side of the screen. 

 

4.2.3 Generate likelihood layers (non-combined) 

We will run this tool twice; first where we keep output years separate, and a second run where 

we combine all likelihood into a single image (i.e., an aggregate). 

Set the parameters as follows: 



 

Select the previous downloaded ls_13_18.nc as the input NetCDF file and save the output 

anywhere on your computer as like_seperate.nc. 

Ensure the combine outputs option is uncheked. This will ensure a likelihood layer is retained 

for each valid year within the input NetCDF (i.e., one layer for every year 2013 ï 2018). 

Leave the remaining parameters as default. 

When ready, click the Run button at the bottom of the panel. When finished, a single 

likelihood.crf layer will be added to the contents panel on the left as well as your current map. 

 

4.2.4 Explore the non-combined likelihood layer 

The non-combined likelihood.crf layer should appear similar to below: 



 

The output shows likelihood values. The higher likelihood values appear red. These red areas 

represent areas in the landscape that were most green, moist and stable for the currently 

visualised year. 

The first image shown on the map is the first year in the non-combined likelihood output, which 

is 2014 (2013 lacked sufficient seasonal information).  

As before, you can visualise different years by clicking on the likelihood.crf layer in the 

contents panel (1) to enable to Multidimensional tab (2). Browse different years using the 

StdTime drop-down control (3): 

 

Take some time to scroll between different years. The highest likelihood areas are unlikely to 

change too dramatically across years, though you may see some fluctuation for the lower 

values (i.e., Triodia grasslands or other shrublands). 

 

1: Click new layer 

 

2: Click multi-

dimensional 

tab 

 

3: Change dates 

 



4.2.5 Generate likelihood layers (combined) 

Run the tool again, except this time letôs combine the likelihood outputs. This can produce a 

more refined GDV likelihood layer. 

Set the parameters as follows: 

 

As before, select the previous downloaded ls_13_18.nc as the input NetCDF file and save 

the output anywhere on your computer as like_combined.nc. 

Ensure the combine outputs option is checked. This will combine all likelihood layers into 

one, showing an average of the likelihood output for the period 2013 ï 2018. This can reduce 

seasonal variation and provide a more robust result. 

Leave the remaining parameters as default. 

When ready, click the Run button at the bottom of the panel. When finished, a new 

likelihood.crf layer will be added to the contents panel on the left as well as your current map 

automatically. 

 

4.2.6 Explore the combined likelihood layer 

The combined likelihood.crf layer should appear similar to below: 



 

Spend some time investigating the output. Where do the highest likelihood values for the 

period 2013 ï 2018 tend to occur? 

 

4.3 Threshold GDV likelihood layer 

4.3.1 Considerations 

¶ The input must be a NetCDF file of non-combined GDV Likelihood data generated prior 

using the GDVSpectra Likelihood tool. 

¶ When using an occurrence shapefile, ensure the data is projected in the GDA94 Albers 

Australia (EPSG:3577) projection system. 

¶ Presence (1s) and absence (0s) must be included in the input occurrence shapefile. 

 

4.3.2 Initialise the tool 

Click the GDVSpectra Threshold tool from the Tenement Tools top menu tab, like so: 



 

The GDVSpectra Threshold geoprocessing panel will appear on the right side of the screen. 

 

4.3.3 Threshold GDV likelihood layers (non-combined) 

The threshold tool can be used to isolate areas of highest likelihood from the GDV likelihood 

data generated via the GDVSpectra Likelihood tool using a thresholding technique. This 

technique can utilise either existing field presence and absence GDV species locations or 

standard deviation. We will apply the latter. 

Set the parameters as follows: 

 

Select the previous generated non-combined likelihood NetCDF like_seperate.nc as the 

input GDV Likelihood NetCDF file and save the output anywhere on your computer as 

thresh.nc. 



Ensure the combine all input years is checked. This will threshold all likelihood data in 

combination. If you donôt want to combine data, you may select one or more specific years 

instead. 

Set the standard deviaton value to 2. Increasing this value will return less but more 

sigificantly high likelihood areas. 

Leave the remaining parameters as default. 

When ready, click the Run button at the bottom of the panel. When finished, a new 

likelihood_threshold.crf layer will be added to the contents panel on the left as well as your 

current map automatically. 

 

4.3.4 Explore the thresholded GDV likelihood 

The thresholded GDV likelihood layer should appear similar to below: 

 

Spend some time investigating the output. How did the thresholding method go? If it over- or 

under-estimated high likelihood areas, try re-running the tool with a higher or lower standard 

deviation.  

There are two more tools remaining within the GDVSpectra toolset: trend analysis and 

Change Vector Analysis (CVA). These are used for assessing vegetation (and other) 

changes within a study area over time. As we will focus on change detection later when we 

look at the NRT Monitoring tools, we will leave these tools for then. 



5 Phenolopy 

5.1 Introduction 

The Phenolopy (phenology + python) tool is used to combine a year or more worth of satellite 

data with the specific goal of extracting vegetation phenological characteristics. Over a dozen 

phenological metrics (i.e., phenometrics) representing various characteristics can be derived: 

 

Metrics of any type of vegetation, from agricultural crops to native vegetation, can be extracted 

from satellite imagery using this tool. The methodology is based on the popular TIMESAT 3.3 

software (http://web.nateko.lu.se/timesat/timesat.asp; Eklundh and Jönsson, 2012). See 

Appendix 16.1 for a deeper explanation of each metric. 

 

5.2 Use the Phenolopy tool 

5.2.1 Considerations 

¶ The input must be a NetCDF file of Landsat or Sentinel data obtained specifically from the 

COG Fetch (ODC) or COG Fetch (Legacy) tools. 

¶ Phenolopy is only able to derive metrics for one year of data at a time. If multiple years are 

selected in the tool, the median of these years is used. 

 

http://web.nateko.lu.se/timesat/timesat.asp


5.2.2 Initialise the tool 

Click the Phenolopy tool from the Tenement Tools top menu tab, like so: 

  

The Phenolopy geoprocessing panel will appear on the right side of the screen. 

 

5.2.3 Generate phenological metrics 

The Phenolopy tool provides numerous options for generating phenological metrics. In most 

cases, the default parameters can be considered optimal (these are also the defaults in 

TIMESAT).  

However, the output is highly influenced by the quality of the satellite data. Based on a quick 

investgation of the input Landsat data, most years appear to contain sigifniciant bushfire 

events. Have a look for youself using the COG Explore tool.  

This makes it somewhat difficult to choose an optimal year. The years least effected by 

bushfire appear to be 2015 and 2016, so letôs use those years in the Phenolopy tool. 

Set the parameters as follows: 



 

Select the previous downloaded ls_13_18.nc as the input NetCDF file and save the output 

anywhere on your computer as pheno.nc. 

Unchek the combine all input dates option and select years 2015 and 2016 to use the 

median of these two years, which were our most bushfire-free years. 



Leaving the rest as default is recommended, but go right ahead and experiment. For example, 

try adding more years. Try a different seasonal detection method. Also, try using Sentinel data 

for 2017 instead. 

When ready, click the Run button at the bottom of the panel. When finished, numerous metrics 

will be added to a ómetricsô group in the contents panel on the left as well as your current map 

automatically. 

 

5.2.4 Explore the various metrics 

Turn all layers off expect the liot_values layer. LIOT (long integral of total) is considered a 

surrogate for total vegetation productivity per year (Eklundh and Jönsson, 2012). Here, the 

dark blue areas are the highest producing areas for the years 2016 and 2017. These appear 

to be related to drainage lines and riparian zones, and in our tests were strongly correlated 

with GDV. 

 

Check out some of the other metrics. From these metrics we can determine approximately 

what day of year certain vegetation started and ended its growing season (SOS, EOS), when 

its peak growth occurred (POS), and how rapidly it grew (ROI, ROS), just to name a few. 

Metrics with the suffix values show values representing MAVI, whereas the suffix times 

values represent the day of year.  

  



6 Nicher 

6.1 Introduction 

The Nicher tool is used to generate a species distribution model (SDM), also known as an 

ecological niche model (ENM). These models combine known locations of a target species 

(i.e., occurrences) and environmental data layers representing potential habitat with modern 

machine learning algorithms to correlate and predict potential distribution across a wider 

landscape. 

 

Generally speaking, SDMs begins with user-provided occurrence points, which represent a 

single species (e.g., flora or fauna observations). Absence locations are then automatically 

generated by the model (i.e., pseudo-absences). These samples are then coupled with 

elevation-derived topographic variables and/or climate rasters to construct a statistical model 

using machine learning algorithms.  

Once the algorithms have learned where species occur and under what environmental 

conditions, the probability of that species occurring elsewhere is estimated as some function 

of the environmental conditions of that place (Franklin, 2010). 

 

6.2 Use the Nicher tool 

6.2.1 Considerations 

¶ The input data (occurrence points and raster layers) must be projected in the GDA94 

Australian Albers (EPSG: 3577) projection. 

¶ Input rasters must be GeoTiffs (.tif). 

¶ All input data must spatially overlap each other or the tool will abort. 

¶ The occurrence point data assumes all records are indicative of species presence. 

¶ Infrastructure can be masked out of the SDM using the Nicher Masker tool. 



6.2.2 Add and explore provided data 

Occurrence points and eighteen topographic variables have been included in the tutorial data.  

The occurrence points contains over 170 simulated locations of riparian zone Eucalyptus 

trees that were derived from aerial imagery.  

Letôs add the occurrence points to the map. Click Add Data button on the top menu and add 

the sdm_occurrence_points.shp file found within the SDM folder from the tutorial data: 

 

 

The occurrence should appear on your map, like so: 

 

Click Add 

Data 

Add 

occurrence 

points 



The eighteen topographic variables represent various topographic phenomena within the 

study area and are all generated from a single 10m resolution digital elevation model (DEM).  

We recommend the free SAGA GIS software (http://www.saga-gis.org) for generating 

topographic variables from elevation data. 

For your reference, the eighteen variables provided are summarised below: 

Variable Filename 

Slope slope.tif 
Aspect aspect.tif 
Convergence convergence.tif 
Curvature curvature.tif 
Multi-scale Topographic Position Index (TPI) multi_tpi.tif 
Topographic Ruggedness Index (TRI) tri.tif 
Topographic Wetness Index (TWI) twi.tif 
SAGA Wetness Index swi.tif 
Flow Accumulation flow_accum.tif 
Landscape Factor ls_factor.tif 
Valley Depth valley_depth.tif 
Wind Exposition wind_exposition.tif 
Analytical Hillshade analytical_hillshade.tif 
Solar Radiation solar_rad.tif 
Distance to Drainage drain_dist.tif 
Air Flow Height air_flow_height.tif 
Wind Shelter wind_shelter.tif 
Max Height max_height.tif 

Many of these variables are commonly used in SDMs, though that doesnôt mean all may be 

relevant here (e.g., Ball et al., 2020; Keppel et al. 2015; Yates et al. 2019). 

Letôs add the topographic variables to the current map and have a quick look. Click the Add 

Data button as above and add all eighteen topographic variables, like so: 

 

Select all 

GeoTiff files 

in the tutorial 

SDM folder 
Click Ok 

http://www.saga-gis.org/


Spend some time exploring the occurrence points and topographic layers on your map. Try 

changing the symbology to these layers.  

This is how valley depth appears on my map with default symbology: 

 

 

6.2.3 Initialise the tool 

Click the Nicher tool from the Tenement Tool top menu tab, like so: 

 

The Nicher geoprocessing panel will appear on the right side of the screen. 

 

6.2.4 Generate species distribution model 

The Nicher tool provides numerous options for generating SDMs. In most cases, the default 

parameters can be considered optimal, though experimentation is recommended. 



Set the parameters are follows: 

 

Add all topographic variables to the continuous variables control. We donôt have any 

categorical layers (e.g., soil mapping), so leave the categorical variables control blank. 

Save the output Nicher NetCDF file anywhere on your computer and call it sdm.nc. 

Set the occurrence point feature to the sdm_occurrence_points.shp added earlier. 



Change the number of generated pseudo-absence points to 500. While there is no general 

rule of thumb on selecting pseudo-absence count, typically the number is larger than 

occurrences by a significant amount (Barbet-Massin et al., 2012). 

Leaving the rest as default is recommended, but go right ahead and experiment.  

When ready, click the Run button at the bottom of the panel. This process shouldnôt take long. 

 

6.2.5 Explore the Nicher SDM 

A single SDM model output will appear on your map when the tool is finished, like so: 

 

The óhotterô red colours are values closer to 1 and represent areas in the landscape that are 

indicative of the most suitable habitat for our target species. In contrast, ócolderô blue 

colours are areas that are highly unlikely to be suitable habitat.  

You can see how the SDM has highlighted the drainage lines and riparian areas where the 

vast majority of our simulated occurrence points were placed. 

Take some time to explore the output or modify the model parameters and inputs. 

 



6.2.6 Assess model performance 

Understanding how the SDM statistically performed is an important step in the SDM 

process. 

Nicher hides this information in the ArcGIS Pro result output window. To explore model 

performance information, click the View Details link that appears in the tool panel when the 

tool has finished processing: 

 

A window will appear. Click the Messages tab and scroll down to the Variance Inflation Factor: 

 

VIF measures the severity of multi-colinearity amonst our input variables. Typrically, you want 

to remove any of your highly correlated variables.  

Based on the general rule of thumb information, do you have any highly correlated 

variables? You may want to remove any variable with a VIF > 5 and re-run the tool. 

 

 



Another helpful measure is the Mean Variable Importance Score: 

 

MVI (or variable importance) indicates how important each topographic variable is within the 

SDM model prediction model. Generally, the lower the value, the less important it is in 

predicting the target species. This measure can also help you remove useless variables to 

improve the accuracy or robustness of your SDM. 

To understand how the SDM model actually performed, two measures are provided.  

First, training accuracy is provided: 

 

This measure provides some insight into how well the model was trained using the occurrence 

point training set automatically by the tool. 

Generally, the Reciever Operating Characteristic (ROC) Area Under the Curve (AUC) metric 

is considered a better measure for model performance (e.g., Narkhede 2018) as it compares 

predicted values against real, known outcomes (i.e., testing set values). 



 

The AUC (and the stricter Precision-Recall Score AUC), both ranked perfectly (1.0). This is 

a perfect model based on our current occurrence points and chosen topographic variables. 

Your model result should be similar, though not necessarily exact. In reality, it is unlikely you 

will score an AUC this high using real-world data (we are using simulated data).  

For comparison, tests using real occurrence points captured in the field resulted in AUCs 

ranging anywhere from 0.75 to 0.95, depending on the occurrence points and topographic 

variables used. 

Finally, removing correlated and less important variables will also likely influence the AUC 

values. It is possible this model is overfitted. 

  



7 VegFrax 

7.1 Introduction 

The VegFrax tool is used to extrapolate high-resolution classified map information (e.g., 

vegetation community classes) on to larger extents of lower-resolution satellite imagery (e.g., 

Landsat) using class fractions and random forest regression: 

 

The method extracts pixel values from a high-resolution classified image that fall within the 

extents of larger randomly selected pixels of a lower-resolution satellite data. In other words, 

if a high-resolution raster has a pixel size of 1m and the moderate image has a pixel size of 

10m, each random sample will have a window that captures 100 1m class pixels within. 

Next, the fraction of each class per window is calculated. For example, 25 Eucalyptus 

woodland pixels would = 25% within a window. A model is built from these frequency values 

and used to predict the fractional values onto the lower-resolution pixels satellite band 

information. 

The major benefit of this method is that small extents of high-resolution data can be 

extrapolated out onto much larger extents over a landscape. 

 

7.2 Use the VegFrax tool 

7.2.1 Considerations 

¶ The input data for this tool must be projected in the GDA94 Australia Albers (EPSG: 

3577) projection. 

¶ The input classified GeoTiff must be higher resolution than the input satellite NetCDF. 

¶ The input data must spatially overlap. 



¶ Avoid including classes with very few pixels as they may not be captured adequately 

when generating training samples. 

 

7.2.2 Add and explore the classified GeoTiff 

A high-resolution, simulated classified vegetation GeoTiff layer has been provided in the 

tutorial data. This layer has six vegetation types (classes 0 ï 5). 

Letôs add this data to the map. Once again, click the Add Data button and navigate to the 

VEGFRAX folder in the tutorial data: 

 

The high-resolution vegetation class map will appear on your map. Hereôs how mine looks 

(your colours are likely different): 

 

Select the 

veg_classes 

GeoTiff 



The six classes in this layer represent estimated broad vegetation community types. These 

communities were generated using an un-supervised clustering algorithm on a high-resolution 

(1m resolution) RGB satellite image. 

Based on an assessment of aerial imagery, the classes best resemble the following: 

Class Description 

0 Duricrust plains and plateau remnants supporting hard spinifex grasslands. 

1 Plateaus and ridges supporting soft spinifex grasslands. 

2 Rugged plateaus, ridges and large hills supporting hard spinifex grasslands. 

3 Small hills and ranges with soft spinifex grasslands. 

4 Mesas, breakaways and stony plains with spinifex grasslands. 

5 Riparian area and moderate to large drainage lines with Eucalyptus species. 

The class weôre most interested in is the Eucalyptus species in riparian and drainage areas 

(i.e., class 5). 

 

7.2.3 Initialise the tool 

Click the VegFrax tool from the Tenement Tool top menu tab, like so: 

 

The VegFrax geoprocessing panel will appear on the right side of the screen. 

 

7.2.4 Generate the class fractional covers 

The VegFrax tool provides numerous options for generating fractional cover maps. In most 

cases, the default parameters can be considered optimal, though experimentation is 

recommended. 

Set the parameters as follow: 



 

Set the input satellite NetCDF to the ls_13_18.nc file we downloaded earlier and the input 

classified GeoTiff to the veg_classes_v2.tif from the tutorial data. 

Save the output NetCDF file as frax.nc anywhere on your computer. 

Uncheck the combine all input NetCDF dates and set the start and end dates to 01/06/2016 

and 31/12/2016, respectively. This will ensure only the drier half of 2016 is used, potentially 

maximalising persistent vegetation on the satellite imagery. 



Ensure all classes in classes to convert are selected. This will ensure the tool produces a 

separate fractional map for each class. You could also just select the relevant classes that 

you need (e.g., only class 5). 

Ensure the combine selected classes option is unchecked. If this is checked, then selected 

classes will be combined in the output. This is helpful for merging similar classes. 

Leaving the rest as default is recommended, but feel free to experiment. Increasing the 

number of model iterations will result in a potentially more accurate output, but will take longer 

to process. 

When ready, click the Run button at the bottom of the panel. This process shouldnôt take 

long. 

 

7.2.5 Explore the VegFrax fractional cover maps 

Six separate fractional layers should appear on your map in a group layer called fractions.  

Explore these fractional maps and see if they match with your high-resolution classified 

GeoTiff. Hereôs how class 5 should appear: 

 

The higher the value indicates that a higher fractional of that class was predicted at that 

location on the lower-resolution satellite data.  



You can see the dark red/brown pixels appear to follow the riparian or drainage lines 

represented on our classified map. 

In contrast, some classes may appear to ódo worseô than others (e.g., less clear, noisier). This 

is likely due to the regression model having difficulty separating spectrally similar classes. 

These are classes weôd want to ignore or merge. 

 

7.2.6 Assess model performance 

Like Nicher, understanding how the fractional model (i.e., random forest regression) 

performed when predicting each requested class. 

VegFrax also hides this information in the ArcGIS Pro result output window. Once more, click 

the View Details link that appears in the tool panel when the tool has finished processing. 

 

A window will appear. Click the Messages tab and some accuracy metrics should be 

displayed: 

 

Mean Squared Error (MSE) is a widely used metric for determining general model 

performance when using random forest regression. This is a helpful metric as it presents the 

amount of error detected in the model in the units of the data (i.e., a value between 0 and 1 

for fractional maps). 

How did the classes perform? Most performed reasonably well. Class 5 saw ~15% error, 

meaning our fractional values may be out by 0.15.  

Your results may vary slightly, mostly due to the random selection of training and testing 

samples. 

  



8 Ensemble 

8.1 Introduction 

The Ensemble tool is used to combine two or more spatial óevidenceô layers using Dempster-

Shafer belief theory (Dempster, 1967; Shafer, 1976).  

This approach not only allows our evidence to be combined but also allows for evidence 

uncertainty and conflicts to be determined and visualised. 

Four outputs are produced by the Ensemble tool, including belief, disbelief, plausibility and 

belief-interval (i.e., uncertainty).  

Prior to ensemble modelling, all input layers must be prepared using fuzzy membership 

functions. We will walk through the process below. 

 

8.2 Prepare evidence layer inputs 

8.2.1 Considerations 

¶ Inputs can be either a NetCDF or GeoTiff. 

¶ Inputs must be projected in the GDA94 Australia Albers (EPSG:3577) projection system. 

 

8.2.2 Initialise the Ensemble Sigmoider tool 

Before we generate an ensemble model, all input values have to be rescaled to a new value 

range 0 ï 1. We can do this using sophisticated fuzzy membership sigmoidal functions. 

Click the Ensemble Sigmoider tool from the Tenement Tool top menu tab, like so: 

 

The Ensemble Sigmoider geoprocessing panel will appear on the right side of the screen. 

 

8.2.3 Rescale evidence layers 

This tool can only take one input at a time, so we need to run it several times in order to 

prepare all our evidence layers.  



Set the parameters for each evidence layer as follows: 

Phenometrics evidence Nicher evidence VegFrax evidence 

   

Using the output NetCDFs from the tools you ran prior (Phenolopy, Nicher and VegFrax), 

convert each into fuzzy ensemble evidence using the settings shown above. 

Here, we have assigned the Phenolopy LIOT metric to an increasing sigmoidal, which will 

rescale all values (from lowest to highest) to 0-1. Notice we have reduced the default high 

inflection point from default down to 120? This is done to reduce the influence of very high 

LIOT values during rescaling. Do the same for the Nicher output, except leave the low and 

high inflection as whatever value is set as default.  

These two layers of evidence will represent belief evidence in the ensemble model, where 

higher values are indicative of areas in the landscape we highly believe our species to be. 

The VegFrax evidence is slightly different. Here, we set a decreasing membership type. This 

rescales the values 1-0 instead, where the original fractional high values are rescaled towards 

0 and the lower values are rescaled towards 1. This evidence will be used as disbelief in the 

ensemble model, and higher values will represent areas we highly believe our species will 

not exist (i.e., disbelief). 

Explore the outputs of each tool run and get a feeling for what the fuzzy membership functions 

are doing to the data. 

 

8.3 Generate ensemble model 

8.3.1 Considerations 

¶ Inputs must have been run through the Ensemble Sigmoider tool prior. 

¶ Inputs must be projected in the GDA94 Australia Albers (EPSG:3577) projection system. 



8.3.2 Initialise the Ensemble Model tool 

Now that the evidence layers have been prepared, we can finally use them in the ensemble 

model tool.  

Click the Ensemble Model tool from the Tenement Tool top menu tab, like so: 

 

The Ensemble Model geoprocessing panel will appear on the right side of the screen. 

 

8.3.3 Generate ensemble model 

The Ensemble Model tool is quite straightforward to use. Set the parameters are follows: 

 

Ensure the liot_belief.nc and sdm_belief.nc files are set the evidence type to belief. Set the 

frax_disbelief.nc as disbelief evidence type. We need at least one of both. 

Save the output NetCDF file as ensemble.nc anywhere on your computer. 

Leave all the remaining parameters as default. 



When ready, click the Run button at the bottom of the panel. This process should be very 

quick. 

 

8.3.4 Explore the ensemble outputs 

Four separate ensemble model output layers should appear on your map in a group layer 

called óensembleô. These layers are called belief, disbelief, plausibility and interval: 

Belief Disbelief 

  

Plausibility Interval (i.e., uncertainty) 

  

 

The belief layer represents all combined belief evidence (i.e., LIOT and the SDM). This layer 

represents areas in the landscape where we strongly believe our target species exists. 

The higher the value is indicative of stronger belief. 



The disbelief layer is similar as belief except inverted; this represents areas where we 

strongly disbelieve our target species exists. In other words, higher values are indicative 

of areas we do not believe the species exists. 

The plausibility layer is interesting, it represents the degree to which we cannot reject the 

hypothesis that our target species exists. The higher the value, the more plausible the chance 

that our species exists. 

Finally, the interval layer (or belief-interval) is the difference between belief and plausibility. It 

is often referred to as a confidence layer as it shows areas where evidence conflicted and 

uncertainty exists. The higher the value, the more uncertainty. This is a useful layer for 

determining if and where more evidence is required. Do you have any areas that might need 

to be investigated further? 

 

  



9 NRT Monitoring 

9.1 Introduction 

The NRT Monitor toolset is designed to provide you with tools to create monitoring areas 

around any vegetation (GDV or not) in Australia and track on-going changes (e.g., growth, 

stability or decline) in near real-time from now and into the future. 

This is achieved using a modern change detection algorithm known as EWMACD (Brooks et 

al., 2013) and Edyn (Brooks et al., 2017). Essentially, the algorithm generates a harmonic 

regression model from satellite-derived vegetation values beginning at a specified year and 

tracks how far vegetation at later dates has deviated from the initial harmonic model. 

This approach has been implemented into the NRT Monitor toolset, along with the ability to 

visualise change, send alerts via email when specific changes occur and continuously monitor 

without the need for user input.  

We will walk through all major functions of the NRT Monitor toolset (as well as some simpler 

change detection methods) in this section. 

 

9.2 Switch to new study area 

If you recall, we added two study area shapefiles at the beginning of the tutorial. Letôs use the 

second area for our monitoring exercises.  

Right click the layer called ophthalmia_study_area_wgs84 in the contents pane and click 

Zoom to Layer: 

 



The map view will zoom to the selected area and should look similar to this (likely with different 

colouring):  

 

Spend some time changing the symbology of the study area feature (e.g., remove the fill 

colour and set the border to black). Likewise, have a look around the study area and the 

underlying aerial imagery to get a sense of the area. 

This area is just north of the Ophthalmia Dam near the town of Newman in the Pilbara, Western 

Australia. Notable impacts (e.g., drainage line obstruction) have been observed to the GDV 

north of the dam at various the dates over the last several decades. We will investigate some 

of these impacts. 

 

9.3 Preliminary vegetation change assessment 

9.3.1 Initialise and run the COG Fetch tool 

Similar to before, letôs download some Landsat satellite data for our new study area. We will 

download all available satellite data from 2000 to 2015 and use it for a preliminary 

investigation of the study areaôs vegetation dynamics over time.  

Click the COG Fetch (ODC) tool from the Tenement Tools top menu tab, like so: 



 

The COG Fetch (ODC) geoprocessing panel will appear on the right side of the screen. In the 

geoprocessing, set the parameters as follows: 

  

Select the ophthalmia_study_area_wgs84 layer as the input area of interest this time. Save 

the output NetCDF file anywhere on your computer and call it ls_00_15.nc.  



Set satellite platform as Landsat for the period 01/01/2000 to 31/12/2015.  

Leave the remaining parameters as default. 

When ready, click the Run button at the bottom of the panel. The download should take 

approximately 5 - 10 minutes on a decent network. 

When this process is complete, you should see a single .nc file approxmately 400mb in size 

at the output location set above. 

 

9.3.2 Initialise and run the COG Explore tool 

As before, visualise the raw satellite data as the vegetation index known as MAVI. 

Click the COG Explore tool from the Tenement Tools top menu tab, like so: 

 

The COG Explore geoprocessing panel will appear on the right side of the screen. In the 

geoprocessing panel, set the parameters as follows: 



 

Set the input NetCDF as the one we just downloaded, ls_10_15.nc. Set the output folder to 

any appropriate folder on your computer for the outputs of the tool (a .crf file).  

Finally, set the vegetation index to MAVI (though feel free to use any). Leave the remaining 

parameters as default.  

When ready, click the Run button at the bottom of the panel. When finished, the satellite data 

represented as MAVI will automatically appear on your map. It should look similar to below: 

 



 

9.3.3 Zoom to impact area 

We will explore some vegetation containing Eucalyptus victrix that was impacted between 

2007 and 2008 as a result of drainage line obstruction due to installation of dam infrastructure. 

Zoom in towards the general area shown below: 

  

 

9.3.4 Graph the vegetation history 

Letôs graph the vegetationôs history from 2000 to 2015. Click the cog_explore.crf layer in the 

left side contents panel (1), then the Multidimensional tab (2), and finally click the Temporal 

Profile button (3): 

 

A new graphing panel should appear at the bottom half of your screen, along with some 

controls in a panel on the right. 

As before, draw a region of interest around the historical impact area, like so: 

1: Click 

layer 

 

2: Click 

Multidimensional 

tab 

 

3: Click 

Temporal 

Profile 



 

We can see that around 2007 and 2008 the impact to the vegetation is observable from the 

temporal profiles.  

Spend some time exploring other vegetation before moving on. Were there any other notable 

changes to vegetation in the area? Any significant vegetation growth areas? 

 

9.4 Detect change via Change Vector Analysis (CVA) 

9.4.1 Introduction 

The CVA tool allows us to compare a range of images across multiple years captured at similar 

dates (e.g., dry season) against a specified baseline image. Every image in the range is 

compared to the baseline. 

The CVA algorithm produces an angle and magnitude map for every image. The angle map 

can be classified into one of four change types (e.g., moisture and vegetation increase or 

decrease), depending on angle value (see above figure). The magnitude indicates how intense 

the change was. 

Our implementation produces four change outputs per year, based on the below figure: 

 

Draw region 

around here 

Start of change 

(2007-2008) 



 

We will now jump back to the GDVSpectra CVA tool to do a preliminary change assessment. 

The Change Vector Analysis (CVA) tool is useful for quick analysis of change in a study area.  

 

9.4.2 Considerations 

¶ The input must be a NetCDF file of raw satellite data downloaded prior using the COG 

Fetch (ODC) or COG Fetch (Legacy) tools. 

¶ The optional mask input NetCDF file must be the threshold NetCDF output from the 

GDVSpectra Threshold tool. 

¶ At least two years of data is required within the raw satellite NetCDF file. 

 

9.4.3 Initialise the tool 

Click the GDVSpectra CVA tool from the Tenement Tools top menu tab, like so: 

 

The GDVSpectra CVA geoprocessing panel will appear on the right side of the screen. 



 

9.4.4 Perform Change Vector Analysis 

Letôs perform a CVA using the previously downloaded Landsat data for the study area. 

Set the parameters as follows: 

 

Set the input satellite NetCDF to the Landsat data NetCDF ls_00_15.nc we have just 

downloaded. Set the output NetCDF file anywhere on your computer and call it cva.nc.  

We now need to set the baseline year(s) and the comparison year(s). Set the baseline range 

to start at 2000 and end at 2004. This will create a baseline of combined imagery that exists 

for the period 2000 to 2004, reducing seasonal fluctuation. 

Set the comparison start and end year from 2005 to 2015. Each year here will be compared 

to the baseline aggregate. 

Leave the remaining parameters as default. This will use the dry period months (months 9, 

10, 11) for comparisons. 








































































